
www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

Foreword��� xv

About the Author��� xvii

About the Technical Reviewer�� xix

Acknowledgments�� xxi

Introduction�� xxiii

Chapter 1: Welcome to ASP.NET Web API■■ ���1

Chapter 2: Building RESTful Services■■ ���13

Chapter 3: Extensibility Points■■ ���29

Chapter 4: HTTP Anatomy and Security■■ ��41

Chapter 5: Identity Management■■ ��81

Chapter 6: Encryption and Signing■■ ���103

Chapter 7: Custom STS through WIF■■ ���119

Chapter 8: Knowledge Factors■■ ���133

Chapter 9: Ownership Factors■■ ��163

Chapter 10: Web Tokens■■ ���191

Chapter 11: OAuth 2.0 Using Live Connect API■■ ���227

Chapter 12: OAuth 2.0 from the Ground Up■■ ��251

Chapter 13: OAuth 2.0 Using DotNetOpenAuth■■ ���283

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents at a Glance

vi

Chapter 14: Two-Factor Authentication■■ ��319

Chapter 15: Security Vulnerabilities■■ ���345

Appendix: ASP.NET Web API Security Distilled■■ ���375

Index��381

www.it-ebooks.info

Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

xxiii

Introduction

Risk comes from not knowing what you’re doing.

—Warren Buffett

Few organizations can afford to have dedicated people working on application security. More often than not, a
developer or a lead developer from the team is entrusted with the responsibility for retrofitting security into the
application or a service. In this quest, the developer looks around, maybe Googles some information, asks a question
or two in forums, and rolls his own security implementation without knowing fully the underlying concepts and the
implications of the choices he made. This path of least resistance is usually taken because of the project schedule
pressures and the lack of emphasis or the focus that the nonfunctional aspect of security generally deserves.

Not reinventing the wheel is a great policy for application development teams because reusable components
like libraries and frameworks help get things done efficiently and the right way, incorporating best practices. The
flip side of reusable components, open source or not, is that they result in a “black box” syndrome: Things just work
and continue to work until the time they stop working. Also, if a reusable component provides options, a developer
must know the different choices available as well as the advantages and disadvantages of those choices to make a
knowledgeable decision on the methods to be employed for the security requirements at hand.

Compared to the SOAP-based Windows Communication Foundation (WCF) services that enjoy the support of
mature security specifications such as WS-Trust, WS-Security, and so on, REST-based ASP.NET Web API currently has
very little support. OAuth 2.0, which is the equivalent for WS-Trust and WS-Security in the REST world, is nascent: The
OAuth 2.0 framework and the bearer token specifications were published in October 2012.

Even if you have simple security needs that can be met by the direct authentication pattern of a client presenting
a password to your ASP.NET Web API for authentication, will you implement Windows Authentication, which is a
popular choice for intranet ASP.NET applications, or Forms Authentication, which is a great choice for Internet ASP.
NET applications, or widely supported HTTP-based basic or digest authentication? There are pros and cons with every
option, and there is no one-size-fits-all solution available for securing a web API.

This is where this book comes in and presents to you the various options available for securing ASP.NET Web
API, along with the merits and demerits of those options. Whether you roll your own security mechanism or use a
reusable component in the form of a library or a framework, you will be able to make informed decisions by learning
the underpinnings of the mechanisms and the implications of the choices you make.

However, this book does not give you any ready-made, penetration-tested code to copy and paste straight into
your production implementation. It does not give you fish, but instead teaches you to catch fish. Using this book, you
can gain a solid understanding of the security techniques relevant to ASP.NET Web API. All the underlying concepts
are introduced from basic principles and developed to the point where you can use them confidently, knowing what
you are doing. If you want to get your hands on proven, production-strength code, there are a couple of excellent
open-source resources:

•	 Thinktecture.IdentityModel.45 features an extensible authentication framework for ASP.NET Web
API supporting SAML 1.1/2.0, JSON Web Token (JWT), Simple Web Token (SWT), access keys, and
HTTP basic authentication. It also has support for protected cookies and Cross Origin Resource
Sharing (CORS). See https://github.com/thinktecture/Thinktecture.IdentityModel.45.

www.it-ebooks.info

https://github.com/thinktecture/Thinktecture.IdentityModel.45
http://www.it-ebooks.info/

■ Introduction

xxiv

•	 Thinktecture’s IdentityServer 2, a lightweight STS built using the .NET Framework 4.5, ASP.
NET MVC4, WCF, and web API that supports both WS-Trust and OAuth 2.0. See
https://github.com/thinktecture/Thinktecture.IdentityServer.v2.

What You’ll Learn
•	 Identity management and cryptography

•	 HTTP basic and digest authentication and Windows authentication

•	 HTTP advanced concepts such as web caching, ETag, and CORS

•	 Ownership factors of API keys, client X.509 certificates, and SAML tokens

•	 Simple Web Token (SWT) and signed and encrypted JSON Web Token (JWT)

•	 OAuth 2.0 from the ground up using JWT as the bearer token

•	 OAuth 2.0 authorization codes and implicit grants using DotNetOpenAuth

•	 Two-factor authentication using Google Authenticator

•	 OWASP Top Ten risks for 2013

How This Book Is Organized
Pro ASP.NET Web API Security is divided into fifteen chapters. Although it is not divided into parts, the chapters do
tend to fall together into several related groups. The first three chapters constitute one such group that pertains to the
core ASP.NET Web API framework. Chapter 4 is a stand-alone chapter on HTTP. Chapters 5, 6, and 7 form a group on
.NET security topics of identity management and cryptography. Chapter 8 is a stand-alone chapter on knowledge-factor
security, and Chapters 9 and 10 are related to ownership factors. Chapters 11, 12, and 13 form the OAuth 2.0 group.
Chapter 14 is a stand-alone chapter on two-factor authentication. Finally, Chapter 15, another stand-alone chapter,
focuses on OWASP security risks.

The way the chapters are organized in this book takes into account the dependencies one chapter might have
on another. If you are confident, you can feel free to skip chapters, but trying to read the chapter on SWT without
understanding the basics of digital signing will likely not be very productive. Similarly, trying to implement implicit
grant flow without understanding the implications of same-origin policy and the related CORS will be a challenging
experience. For this reason, the best way to derive the maximum benefit from this book is to read the chapters
sequentially, starting with Chapter 1 and skimming any text that you are already familiar with.

Chapter 1: Welcome to ASP.NET Web API
We start off with understanding what a web API is in general before moving on to a primer on RESTful web API,
followed by a review of how Microsoft’s ASP.NET Web API framework can help you build web APIs. We complete the
chapter with a primer on security that looks at all aspects of security, above and beyond a login screen accepting a
username and password, which for many people is the meaning of the word security.

Chapter 2: Building RESTful Services
An HTTP service that handles XML and/or JSON requests and responds to HTTP methods such as GET, POST, PUT,
and DELETE is not necessarily a RESTful service. This chapter introduces you to Roy T. Fielding’s constraints that must
be satisfied for an HTTP service to be called RESTful and builds our first web API, a simple Hello-World kind of API.

www.it-ebooks.info

https://github.com/thinktecture/Thinktecture.IdentityServer.v2
http://www.it-ebooks.info/

■ Introduction

xxv

Chapter 3: Extensibility Points
The ASP.NET Web API framework has various points of extensibility built into the web API pipeline for us to extend the
processing pipeline. This chapter focuses on understanding the web API extensibility points such as filters and message
handlers from the point of view of leveraging the same for securing ASP.NET Web API to deal with threats at the earliest
available opportunity. It also highlights the trade-offs associated with selecting the web API extensibility point of a
message handler over the ASP.NET extensibility point of the HTTP module for authentication and authorization.

Chapter 4: HTTP Anatomy and Security
This chapter introduces you to Hypertext Transfer Protocol (HTTP), the protocol behind the World Wide Web.
Understanding HTTP is a prerequisite to understanding the security aspects of ASP.NET Web API. Instead of fighting
against it or abstracting it away, web API embraces HTTP. For this reason, understanding HTTP is all the more
important: A house is only as strong as its foundation! This chapter also covers some of the advanced concepts of HTTP,
things that are a must to create production-grade, performant, secure web APIs such as Web Caching, ETags, Cross-Origin
Resource Sharing (CORS), cookies, proxy servers, HTTPS, and the ultimate tool of HTTP debugging, Fiddler.

Chapter 5: Identity Management
Identity management is an important aspect of application security. In this chapter, we focus on how a subject or an
entity gets authenticated and how the actions an entity attempts to perform are authorized by an application in the
context of the .NET Framework. This chapter introduces you to the interfaces IIdentity and IPrincipal that form the
basis of role-based access control (RBAC) and compares it with the more flexible and granular claims-based access
control (CBAC), which is built based on the claims. Readers get to the take a first peek at the security tokens and the
three major formats: SAML, SWT, and JWT.

Chapter 6: Encryption and Signing
Windows Identity Foundation (WIF) hides away the nuts and bolts of tokens and lets the developers work with a set of
claims without bothering about the aspects of cryptography. As we step out of the realm of WCF/WIF, securing RESTful
ASP.NET Web APIs without depending on WIF classes for the cryptographic heavy lifting means understanding the
nuts and bolts of encryption and signing. This chapter covers encryption and decryption and signing and validation
using symmetric keys and asymmetric keys: public–private keys generated using RSACryptoServiceProvider as well as
a self-signed certificate generated using the Makecert tool.

Chapter 7: Custom STS through WIF
One of the key components in the WS-Trust scheme of things is Security Token Service (STS). WIF allows you to build
your own custom STS, although it is highly recommended that you buy one instead of building one. This short chapter
introduces you to WS-* protocols, specifically WS-Trust, and goes through the steps for creating a custom STS to
enhance your understanding of STS and how STS creates and issues tokens.

Chapter 8: Knowledge Factors
A knowledge factor is something a user knows, such as a password or a PIN. This chapter explores the knowledge-factor
authentication mechanisms that can be used to secure ASP.NET Web API. Login credentials of a user ID and password
combination is probably the most widely used knowledge factor, and this chapter focuses on the mechanisms
leveraging this factor: the two authentication schemes defined in HTTP specification, namely basic and digest
authentication, and the Windows-OS-powered Integrated Windows Authentication (IWA), more commonly known as
Windows Authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxvi

Chapter 9: Ownership Factors
An ownership factor is something a user owns or possesses, such as a key, a certificate, or a token. This chapter examines
ownership-factor authentication mechanisms for securing ASP.NET Web API, such as preshared keys (PSKs), more
commonly called API keys, X.509 client certificates, and SAML tokens.

Chapter 10: Web Tokens
This chapter is an extension of the previous chapter on ownership-factor security, for web tokens are ownership factors
just like SAML tokens. However, web tokens deserve a chapter of their own because they are a better fit for RESTful
services. Hence, this chapter is dedicated to web tokens and takes an in-depth look at the two most popular web token
formats by studying the anatomy of the Simple Web Token (SWT) and the JSON Web Token (JWT), including both
signed (JWS) and encrypted (JWE) forms.

Chapter 11: OAuth 2.0 Using Live Connect API
OAuth 2.0 is an open standard for authorization. Roughly speaking, it can be considered the WS-* of the REST world.
We start our exploration of OAuth 2.0, mainly from the point of view of a client consuming a web API that implements
OAuth 2.0. We review the four types of grants and take a detailed look at implicit and authorization code-based grants
using Microsoft Live Connect API.

Chapter 12: OAuth 2.0 from the Ground Up
In this chapter, we move to the other side of the table. Instead of focusing on a client that consumes an API, we now
develop a web API implementing OAuth 2.0, specifically the authorization code-based grant. Implementation is
performed from scratch using two ASP.NET MVC web applications so you can understand the nuts and bolts.

Chapter 13: OAuth 2.0 Using DotNetOpenAuth
Although it is possible to build on the OAuth 2.0 implementation from the previous chapter and develop your
production-strength OAuth 2.0 implementation, this chapter implements the same authorization code-based grant using
DotNetOpenAuth (DNOA), which is a well-established open source .NET library that helps you write production-grade
OAuth 2.0–based authorization for your web API, in conformance to the principle of not reinventing the wheel.

Chapter 14: Two-Factor Authentication
When you have an authentication mechanism that leverages a combination of two of the knowledge, ownership,
and inherence factors, it is called two-factor authentication (TFA or 2FA). This chapter covers TFA by leveraging the
knowledge factor of a password, the ownership factor of an X.509 client certificate, and TFA on a need basis realized
through the use of TOTP codes provided by Google Authenticator.

Chapter 15: Security Vulnerabilities
This chapter looks at important and potential security risks or vulnerabilities, points of interest pertaining to ASP.NET
Web API, and things to look out for while building a secure, production-strength ASP.NET Web API. The coverage
includes the top risks, per OWASP 2013, as well as best practices such as logging and validation.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxvii

Appendix: ASP.NET Web API Security Distilled
This appendix is a grand summary of the book, a recap of the various security mechanisms covered in the book.
Because there is no good or bad mechanism in an absolute sense, the idea of this book is to present you with all the
mechanisms and let you decide based on your needs. This appendix provides an overview of the options.

What You Need to Use This Book
At a bare minimum, you need Microsoft Visual Studio 2010, although all the code listings and samples in this book
were developed using Visual Studio 2012 targeting the .NET Framework 4.5. If you use Visual Studio 2010, you will
need the WIF runtime as well as the WIF SDK, which are available as stand-alone installations.

One important point to note is that WIF has been fully integrated into the .NET Framework starting with the .NET
Framework 4.5, both the tooling as well as the classes. As part of this process, there are changes to the classes and the
namespaces the classes were part of in the .NET Framework 4.0 compared to the .NET Framework 4.5. If you use Visual
Studio 2010 and the .NET Framework 4.0, you will need to look at sources outside of this book to figure out the .NET
Framework 4.0 equivalents of the code and configuration settings used in this book.

The language of choice for all the code written in this book is C#. Although there are Visual Basic.NET folks out
there, it is not feasible to show the Visual Basic.NET equivalent, as that would bloat the size of the book. Understanding
C# syntax is not that hard, after all!

ASP.NET Web API is part of ASP.NET MVC 4.0. It ships with Visual Studio 2012. Again, if you have the
constraint of having to work with Visual Studio 2010, you must install ASP.NET MVC 4.0 by visiting
http://www.asp.net/mvc/mvc4.

The bottom line is that Visual Studio 2012 and the .NET Framework 4.5 are strongly recommended. If you are
really determined, you can get away with using Visual Studio 2010 targeting the .NET Framework 4.0. However, you
will not be able to run the code samples provided with this book as is, and you will need to massage the C# code and
configuration settings to make them work with the .NET Framework 4.0. All the samples in this book are coded and
tested in Windows 7 using Visual Studio 2012 targeting the .NET Framework 4.5. Also, you need IIS 7.0.

The browser we use is mostly Internet Explorer 9.0; for some specific cases, we use Mozilla Firefox or Google
Chrome. We also use the HTTP debugging tool called Fiddler. One of the chapters optionally uses Google Authenticator
software that runs in iOS, BlackBerry, and Android-based mobile phones.

Who This Book Is For
No prior experience with .NET security is needed to read this book. All security-related concepts are introduced from
basic principles and developed to the point where you can use them confidently in a professional environment. A good
working knowledge and experience of C# and the .NET Framework are the only prerequisites to benefit from this book.

www.it-ebooks.info

http://www.asp.net/mvc/mvc4
http://www.it-ebooks.info/

1

Chapter 1

Welcome to ASP.NET Web API

“Begin at the beginning,” the King said gravely, “and go on till you come to the end: then stop.”

—Lewis Carroll, Alice in Wonderland

If you have chosen to read this book, which is on ASP.NET Web API security, it is highly likely that you are familiar with
ASP.NET Web API. In case you are not or simply would like me to begin at the beginning, this introductory chapter
along with the next chapter will help you gain a quick understanding of the basics of ASP.NET Web API and help you
appreciate the need for the emphasis on security for ASP.NET Web API applications.

ASP.NET Web API Security: If we break this down, we get multiple terms—Web API, ASP.NET Web API, and
Security. We start by understanding what a web API is in general before moving on to a primer on RESTful Web API,
followed by a review of how the Microsoft ASP.NET Web API framework can help you build web APIs. We complete the
chapter with a primer on security that looks at all aspects of security, above and beyond the login screen accepting a
username and password, which for many is synonymous with the word security.

What Is a Web API, Anyway?
It all started with the launch of Sputnik in 1957, by the Union of Soviet Socialist Republics (USSR). The United States,
under the leadership of then President Eisenhower, started the Advanced Research Projects Agency (ARPA) to advance
the United States in the technology race, in the light of the Sputnik launch. One of the ARPA-funded projects was
ARPANET, the world’s first operational packet switching network. ARPANET led to the development of protocols that
allowed networks to be joined together into a network of networks that evolved into the ubiquitous Internet of today.

The terms Internet and World Wide Web or simply Web, are generally used interchangeably, but they are separate
although related things. The Internet is the infrastructure on which the World Wide Web has been built. The Internet
connects islands of smaller and bigger networks into one huge network.

The World Wide Web builds on this network by providing a model to share data or information with the
computer users who are all part of the Internet. Servers or web servers serve data in the form of documents or web
pages to the clients, called web browsers, which display the documents in a format readable by human beings.
Typically, a web page is created in a language called Hyper Text Markup Language (HTML) and is served to a browser
by the web server as a result of both parties following a protocol, Hyper Text Transfer Protocol (HTTP). The Web is just
one of the ways information can be shared over the Internet. Just like HTTP, there is Simple Mail Transfer Protocol
(SMTP) for e-mail, File Transfer Protocol (FTP) for transfer of information in the form of files, and so on.

Initially, web pages were just static pages existing in the file system of some computer with data that hardly
changed. As the World Wide Web started to grow and the user base started to expand, there was a need for web pages
to be generated on the fly. Web servers started delegating this responsibility to engines such as the Common Gateway
Interface (CGI) to generate web pages on the fly. The dynamic web pages and the introduction of the client-side
JavaScript scripting language led to a new generation of software applications called web applications. The end user
of a web application is a human being with an objective of performing a task.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Welcome to ASP.NET Web API

2

Because the end user of a web application is a human being, there is a user interface associated with a web
application. The browser is what provides this interactive interface for a user. In addition, there is a need for
nonhuman entities such as a machine running some software to communicate and exchange data over the World
Wide Web. Enter the web service. Although not mandated, a web service uses HTTP to exchange data. Unlike a web
application, which is mainly about HTML over HTTP, for a web service it is mainly Extensible Markup Language
(XML) over HTTP. A client sends a request in XML, and the server responds with an XML response. This XML can be
Plain Old XML (POX), which is typically a nonstandard XML only the client and server will be able to make sense out
of, or it can be standard Simple Object Access Protocol (SOAP).

To appreciate the value SOAP brings to the table, let us pretend we got some XML response representing an
employer in an organization, as shown in Listing 1-1.

Listing 1-1.  Response XML

<employee>
 <firstname>John</firstname>
 <lasttname>Human</lastname>
 <salary>2000</salary>
 <doj>06/01/1998<doj>
 <lastlogin>10/20/2012 09:30:00</lastlogin>
</employee>
 

To do anything useful with this in our application, this XML might need to be loaded into some data
structure, say an object as defined by a class in the case of an object-oriented programming (OOP) language. If I’m
programming, how will I define the data type of the field to store salary? Will it be an integer or a fractional number?
What if my request to get the employee fails because there is no such employee or there is some other problem? How
will I know where to look in the XML if the request has failed? SOAP helps us with questions like these by providing
a basic messaging framework on which web services can be built. SOAP has Microsoft roots, although it is currently
maintained by the World Wide Web Consortium (W3C).

Microsoft technologies such as the ASMX-based web service, which is currently a legacy technology, and its
successor Windows Communication Foundation (WCF) all have great affinity toward SOAP. An ASMX-based web
service allows the exchange of SOAP messages over HTTP and that’s pretty much it. WCF builds on this and tries to
abstract away the infrastructure from the programming. If I have an Employee service that returns the details of an
employee, I can host the service to be consumed over HTTP, over Transmission Control Protocol (TCP), through
Microsoft Message Queuing (MSMQ), or any combinations thereof. By having the same contract with the client, I can
have multiple binding for multiple ways my service can be reached. In both cases, though, the payload will be SOAP,
by default. An important aspect of SOAP-based web services is the availability of a Web Service Definition Language
(WSDL) file, which allows tooling to be built that helps in consumption of services. For example, Microsoft Visual
Studio can generate proxy classes reading WSDL definitions, and the client trying to consume the services (i.e., the
programmer writing the client code) can directly work with the generated classes, with the whole existence of the web
service hidden from the programmer.

A web API is a service. Technically, there is no difference. What is different is the manner in which a web API
is intended to be used. Let’s say I have a web application where a user can post his thoughts in the form of a short
message. A user can log in to my application from a browser, add new posts or update the ones she posted in the
recent past, or even delete the old ones. In other words, users can perform create, read, update, and delete (CRUD)
operations on their posts using my web application. My application became so popular that there are folks who want
to integrate this CRUD functionality into their mobile apps so that users can perform CRUD operations from their
mobile devices without logging on to my web application while they are away from their normal computers.

I can now create a web service to support the CRUD operations. Technically it is a web service, but it is an
application programming interface (API) to interact with my web application, except that it is over the Web.
Traditionally, APIs are a bunch of classes with properties and methods that are part of a reusable component to
interact with another application. This scenario is exactly that, except that my API is not available in the form of a
software component, but over the Web instead. It is a web API!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ WelCome to aSp.Net Web apI

3

Although it is fundamentally a web service, the intention is to use it to manipulate application data, and that is
what makes it an API. One important characteristic of most of the typical web APIs in use, although not a defining
characteristic, is that web APIs tend to be RESTful web services as compared with SOAP-based web services. A web
service can very well be REST based, so this is not the defining characteristic. By using REST, a web API tends to be
lightweight and embraces HTTP. For example, a web API leverages HTTP methods to present the actions a user would
like to perform and the application entities would become resources these HTTP methods can act on. Although SOAP
is not used, messages—requests and responses—are either in XML or JavaScript Object Notation (JSON).

A Primer on RESTful Web API
RESTful Web API, as the name indicates, is a web API or web service implemented using HTTP and is based on
the REST architectural style. To be exact, a RESTful service must satisfy the constraints, as defined in the doctoral
dissertation of Roy T. Fielding.1 We will look at RESTful services and all the constraints in Chapter 2, but here is a
primer on RESTful Web API.

A central concept to REST is the existence of resources that can be identified through a uniform resource
identifier (URI). If you equate resources to nouns, then actions on a resource are verbs and are represented by HTTP
methods such as GET, POST, PUT, and DELETE. One of the key characteristics of RESTful Web API is that the URI or
the request message does not include a verb. Let us look at a few examples to see what is not RESTful.

1. To retrieve the details of an employee, the URI is
http://server/hrapp/getemployee?id=12345

2. To retrieve the details of an employee, the URI is
http://server/hrapp/employee?id=12345&action=GET

3. To retrieve the details of an employee, the URI is http://server/hrapp/employee and the
request message determines the action to be carried out. For example, the XML fragment
<GetEmployeeDetails><Id>12345</Id></GetEmployeeDetails> in the request indicates to
the service to fetch the details of the employee with an identifier of 12345.

Now, let us see how the employee details can be retrieved with a RESTful service. The URI will be
http://server/hrapp/employees/12345. The URI itself will include the employee ID and serves as an identifier to
the resource, which is an employee in this case. Actions on this resource are accomplished through HTTP verbs. The
action that we are trying to perform against the resource is retrieving the details. Therefore, the request will be an
HTTP GET on the URI http://server/hrapp/employees/12345.

To update this employee, the request will be an HTTP PUT on the same URI. Similarly, to delete this employee,
the request will be an HTTP DELETE request, again on the same URI. To create a new employee, the request will be an
HTTP POST to http://server/hrapp/employees (without the identifier).

In the case of POST and PUT, the service must be passed the employee data or the resource representation. It is
typically XML or JSON that is sent as the HTTP request message body.

The RESTful service responds with the HTTP status code indicating success or failure. For example, if the
employee with identifier 12345 does not exist, the HTTP status code of 404 - Not found will be returned. If the request
is successful, the HTTP status code of 200 - OK will be returned.

The RESTful service sends responses in XML or JSON, similar to the request. For example, a GET to
http://server/hrapp/employees/12345 results in a response containing JSON representing the employee with an ID of 12345.

1Fielding, Roy Thomas. “Architectural Styles and the Design of Network-based Software Architectures.” Doctoral dissertation,
University of California, Irvine, 2000.

www.it-ebooks.info

http://server/hrapp/getemployee?id=12345
http://server/hrapp/employee?id=12345%26action=GET
http://server/hrapp/employee
http://server/hrapp/employees/12345
http://server/hrapp/employees/12345
http://server/hrapp/employees
http://server/hrapp/employees/12345
http://www.it-ebooks.info/

Chapter 1 ■ Welcome to ASP.NET Web API

4

Hello, ASP.NET Web API!
Now that you have a 10,000-foot overview of RESTful Web API, let us look at how ASP.NET Web API can help you build
RESTful Web API or web services.

ASP.NET Web API is a framework for building RESTful services on the .NET Framework. So, we have this URI
http://server/hrapp/employees/12345 and a client issues a GET. To respond to this request, we need to write code
somewhere that retrieves the employee details for 12345. Obviously, that code has to be in some method in some C#
class (C# is the language of choice for this book). This is where the concept of routing comes into play.

The class in this case will be a class that derives from the ApiController class, part of the ASP.NET Web API
framework. All you need to do is to create a subclass of the ApiController, say EmployeesController, with a method
Get(int id). The ASP.NET Web API framework will then route all the GET requests to this method and pass the
employee ID in the URI as the parameter.

Inside the method, you can write your code to retrieve the employee details and just return an object of type
Employee. On the way out, ASP.NET Web API will handle serialization of the employee object to JSON or XML. The
web API has the capability of content negotiation: A request can come in along with the choices of the response
representation, as preferred by the client. The web API will do its best to send the response in the format requested.

In case of requests with a message payload such as POST, the method you will need to define will be
Post(Employee emp) with a parameter of type Employee. ASP.NET Web API will deserialize the request
(XML or JSON) into the Employee parameter object for you to use inside the method. If you have experience working on the
ASP.NET MVC framework, the web application framework from Microsoft that implements the Model-View-Controller
(MVC) pattern, you can relate the preceding paragraphs to routing and model binding in ASP.NET MVC.

ASP.NET Web API enables you to create HTTP-based services through the powerful ASP.NET MVC programming
model familiar to many developers. Some of the great features from ASP.NET MVC like routing, model binding, and
validation are all part of ASP.NET Web API as well.

Like MVC, there are extensibility points available to tap into and extend the processing pipeline, such as action
filters. There are additional extensibility points available, the most notable one being message handlers. Like MVC,
a web API lends itself very well to automated unit testing.

In the case of ASP.NET MVC, all controller classes inherit from the Controller class of the MVC framework. Similar
to that, all controller classes in a web API inherit from the ApiController of the web API framework. MVC dispatches
a request to an action method inside a controller by mapping the uniform resource locator (URL) to an action method.
The web API dispatches a request to an action method based on HTTP verbs rather than the action name from the URL.

ASP.NET MVC 4 ships as part of Visual Studio 2012 and as an add-on for Visual Studio 2010 SP1. ASP.NET Web
API is a part of MVC 4.0. There is a new project template called WebAPI available to create web API projects. You can
have both API controllers and MVC controllers in the same project.

Note■■  T he MVC controller base class is System.Web.Mvc.Controller, whereas the API controller base class is
System.Web.Http.ApiController. The classes in the two frameworks are in different namespaces. Even if the class
name is the same, as in the case of AuthorizeAttribute, they will be part of different namespaces.

WCF vs. ASP.NET Web API
Is ASP.NET Web API the only means to create RESTful services in .NET? The answer is no. You can use WCF as well.
If you have been associated with the .NET Framework for a nontrivial amount of time, you have for sure encountered
the term Dub-See-Eff (WCF), the one-stop framework for all service development needs in the .NET Framework,
including RESTful services. Why a new framework then?

The short answer is that ASP.NET Web API is designed and built from the ground up with only one thing in
mind—HTTP—whereas WCF was designed primarily with SOAP and WS-* in mind, and REST was retrofitted through

www.it-ebooks.info

http://server/hrapp/employees/12345
http://www.it-ebooks.info/

Chapter 1 ■ Welcome to ASP.NET Web API

5

the WCF REST Starter Kit. Well, if you are interested in doing one kind of task, such as opening a beer bottle, which
would you prefer: a simple bottle opener or a Victorinox SwissChamp?

The programming model of ASP.NET Web API is similar to ASP.NET MVC in that it is simple and convention
based, as compared to defining interfaces, creating implementation classes, and decorating them with several
attributes. However, ASP.NET Web API is not supposed to supersede WCF. If you want to open a wine bottle, you can’t
use a simple bottle opener, can you?

It is important to understand the coexistence of WCF and ASP.NET Web API. WCF has been around for a while
and ASP.NET Web API is a new kid on the block, but that does not mean WCF is meant to be replaced by ASP.NET Web
API. Both WCF and ASP.NET Web API have their own place in the big picture.

ASP.NET Web API is lightweight but cannot match the power and flexibility of WCF in certain cases. If you have
your service using HTTP as the transport and if you want to move over to some other transport, say TCP, or even
support multiple transport mechanisms, WCF will be a better choice. WCF also has great support for WS-*.

However, when it comes to the client base, not all platforms support SOAP and WS-*. ASP.NET Web API–powered
RESTful services can reach a broad range of clients including mobile devices. The bottom line is it is all about
trade-offs, as is the case with any architecture.

Programming Model Differences
Let’s try to understand the differences in programming models by looking at a simple example: an employee service
to get an employee of an organization, based on the employee ID. WCF code (see Listing 1-2) is voluminous, whereas
ASP.NET Web API code (see Listing 1-3) is terse and gets the job done.

Listing 1-2.  WCF Way

[ServiceContract]
public interface IEmployeeService
{
 [OperationContract]
 [WebGet(UriTemplate = "/Employees/{id}")]
 Employee GetEmployee(string id);
}
 
public class EmployeeService : IEmployeeService
{
 public Employee GetEmployee(string id)
 {
 return new Employee() { Id = id, Name = "John Q Human" };
 }
}
 
[DataContract]
public class Employee
{
 [DataMember]
 public int Id { get; set; }
 
 [DataMember]
 public string Name { get; set; }
  
 // other members
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Welcome to ASP.NET Web API

6

Listing 1-3.  ASP.NET Web API Way

public class EmployeeController : ApiController
{
 public Employee Get(string id)
 {
 return new Employee() { Id = id, Name = "John Q Human" };
 }
} 

A couple of things are worth mentioning here: First, the web API is exactly the same as a normal MVC controller
except that the base class is ApiController.

Features of MVC that users like, such as binding and testability typically achieved through injecting a repository,
are all applicable to a web API as well. Routing in ASP.NET Web API is very similar to ASP.NET MVC. The only
difference is that the HTTP method is used to choose the action method to execute, as compared with the URI path
in MVC. The naming convention followed in naming the method is sufficient enough for the framework to map this
method to HTTP GET. Of course, the name of the method has to just begin with Get. It therefore can be Get and it can
very well be GetEmployeeByIdentifier and ASP.NET Web API would still map the action method to HTTP GET.

If you are experienced with ASP.NET MVC, you could be wondering how different a web API is while the MVC
controller’s action method can return JsonResult. With JsonResult action methods, a verb gets added to the URI
(e.g., http://server/employees/get/1234), thereby making it look more RPC-ish than REST-ish. Actions such as
GET, POST, PUT, and DELETE are to be accomplished through HTTP methods rather than through anything in the
URI or query string.

ASP.NET Web API also has far superior features, such as content negotiation. ASP.NET MVC’s support for
JsonResult is only from the perspective of supporting AJAX calls from the JavaScript clients and is not comparable to
ASP.NET Web API, a framework dedicated to building RESTful services.

Scenarios in Which ASP.NET Web API Shines
Let us now review the scenarios where ASP.NET Web API can add value to an application or system architecture.
The following are the scenarios where ASP.NET Web API, as the back end, brings the most value to the table.

•	 Rich client web applications: ASP.NET Web API will be a good fit for rich client web
applications that heavily use AJAX to get to a business or data tier. Client applications
can be anything capable of understanding HTTP. It can be a Silverlight application or an Adobe
Flash–based application or a single-page application (SPA) built using JavaScript libraries such
as JQuery, Knockout, and so on, to leverage the power of JavaScript and HTML5 features.

•	 Native mobile and nonmobile applications: ASP.NET Web API can be a back end for native
applications running on mobile devices where SOAP is not supported. Because HTTP is
a common denominator in all the platforms, even the native applications can use a .NET
back-end application through the service façade of a web API. This is especially useful when
a mobile application is a secondary user interface (UI) channel with an ASP.NET MVC
application being the primary UI channel. Also, native applications running on platforms
other than Windows such as a Cocoa app running on Mac can use ASP.NET Web API as the
back end.

www.it-ebooks.info

http://server/employees/get/1234
http://www.it-ebooks.info/

Chapter 1 ■ Welcome to ASP.NET Web API

7

•	 Platform for Internet of Things (IOT): IOT devices with Ethernet controllers or a Global
System for Mobile Communications (GSM) modem, for example, can speak to ASP.NET Web
API services through HTTP. A platform built on .NET can receive the data and do business. Not
just IOT devices, but other HTTP-capable devices such as radio frequency ID (RFID) readers
can communicate with ASP.NET Web API.

Caution■■  A SP.NET Web API is meant for developing web APIs. In other words, although it can technically work,
it is not the right candidate for supplementing your web application’s AJAX needs, especially when the AJAX use cases
are very few.

ASP.NET Web API as a service layer or tier need not always be the optimum solution from a performance
standpoint, because there is an HTTP overhead with every call. For a service tier that is used by the presentation tier,
with both tiers in the same network within the safety of firewalls, TCP or Named Pipes could be better choices and
WCF can outshine a web API in this area.

A typical service tier or layer in a .NET technology stack gets realized through WCF. Such WCF services are
consumed by a front-end application such as a web application (ASP.NET WebForms or MVC) or thick client
application (WPF or WinForms). With the exception of Silverlight apps that consume WCF services, a majority of the
typical architecture scenarios see WCF services sitting comfortably behind the firewall outside of the DMZ, whereas
web servers running the front end or the web application sit within the DMZ and are more prone to attacks. The web
API tends to be similar to web applications, as they get typically consumed over the Internet just like an Internet web
application and hence get hosted in the servers in the DMZ.

Figure 1-1 illustrates a typical deployment associated with ASP.NET Web API. It is worth noting that ASP.NET Web
API is well suited for communication across the firewall, especially given the friendly relationship port 80 enjoys with
corporate firewall policies. Native mobile apps, browsers, and other devices are typically outside the firewall and this
basically boils down to the fact that ASP.NET Web API has to live outside the protection corporate firewalls offer and
be exposed to the Internet. Security will be a major factor in architecting and designing ASP.NET Web API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Welcome to ASP.NET Web API

8

A Primer on Security
We have seen quite a bit on RESTful Web API and the ASP.NET Web API framework. Finally, we move to the main
topic, security. This is a very broad term, but in general it signifies the state of being secure, or freedom from danger.
This book is about ASP.NET Web API security, so obviously our focus here is information security. As per U.S. law, the
term information security means protecting information and information systems from unauthorized access, use,
disclosure, disruption, modification, or destruction to provide the elements of the CIA hierarchy.

Figure 1-1.  Deployment diagram illustrating the typical deployment associated with ASP.NET Web API

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Welcome to ASP.NET Web API

9

Confidentiality, which means preserving authorized restrictions on access and disclosure, •	
including the means for protecting personal privacy and proprietary information.

Integrity, which means guarding against improper information modification or destruction, •	
and includes ensuring information nonrepudiation and authenticity.

Availability, which means ensuring timely and reliable access to and use of information.•	

Confidentiality is about preventing the disclosure of information to unauthorized entities. Encrypting sensitive
data and storing hashed passwords are examples of ensuring confidentiality. We look at encryption in Chapter 6 and
hashing in Chapter 15.

Integrity is about preventing modifications to the data by unauthorized entities (an entity is a user or an external
system that uses the application). This means, first and the foremost, that an entity must be identified. Identification
is the process of simply identifying the entity. It is different from authentication, which is about ensuring that the user
really has the identity that she claims to have.

As an example, consider an application where a user, John Q. Human, with a user ID of jqhuman and some
password is trying to log in to the application. As soon as the application gets the user-entered identifier of jqhuman,
it can identify the user. At that point, the user is an identified user, but not yet authenticated. Once John enters
the password, the application compares the user-entered password with the one in its records; if they match, the
identified user is considered an authentic user. It is important to note that identification must precede authentication,
because only after the user is identified can the application retrieve the password from the data store for comparison
against the user-entered password to complete the authentication process.

Authentication can be based on three factors: knowledge, ownership, and inherence. In the preceding example,
the user John uses his user ID and password. The password is something the user knows or remembers and hence the
password is a knowledge factor. Authentication can be based on things a user owns or possesses, such as a security
token or a client certificate, which are ownership factors. The third factor, the inherence factor, is something a user is,
such as a fingerprint or DNA sequence. It is also possible to combine one or more of these factors for authentication.
If two factors are involved, it is a two-factor authentication (TFA or 2FA). An example of TFA would be authentication
based on an X.509 client certificate and a user ID–password combination. We cover knowledge-factor-based security
in Chapter 8 and ownership-factor-based security in Chapters 9 and 10. Two-factor security is covered in Chapter 14.

Once an entity is authenticated, actions that the entity wishes to perform on the application can be access
controlled. Authorization is the process that ensures only those entities with permission to perform a task do perform
the task. We look at identity management in depth, mainly from the point of view of the .NET Framework and the
concepts of authentication and authorization, in Chapter 5.

Authorization ensures entities get to see and operate on what they are allowed to access, but there are cases
where an entity would like to open up its own data or information in one application to another application, mostly on
a temporary basis. There are standards available in this area, such as OAuth, which we look at in depth in Chapters 11,
12, and 13.

Authentication and authorization are important for ensuring integrity, but those two factors alone do not
constitute the exhaustive list of things needed to ensure integrity. There are other requirements, too. For example, let’s
say our application is a web application and a user posts an HTML form with data based on which application data
store will be updated. Of course, the application enforces authentication and authorization, but what if someone in
the middle tampers with the data in transit? Then, integrity is said to be compromised.

It is common to handle situations like this by securing the layer that transports the data; in the case of web
applications, this means using transport security through HTTPS/TLS. We look at HTTPS in depth in Chapter 4. An
alternative to transport security is message security, where the message is protected without protecting the transport
layer. Message security typically involves encryption and signing of messages or the data transmitted, which are
covered in depth in Chapter 6.

Similar to man-in-the-middle attacks, where an adversary in the middle attempts to tamper with data, there are
multiple other forms of attacks and associated security risks. The Open Web Application Security Project (OWASP)
is a worldwide, not-for-profit organization that publishes a list of the top ten current security risks. Risks from this list
that are relevant to ASP.NET Web API are covered in Chapter 15.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Welcome to ASP.NET Web API

10

So far, we have focused on the confidentiality and integrity aspects of the CIA triad. The third aspect, availability,
is about an application being available for legitimate users. There are forms of attacks such as denial-of-service
attacks, which are all about making an application unavailable for users. DoS and brute-force attacks are covered
in Chapter 15, but availability from a security standpoint is mostly attributed to IT administration and operation
activities involving specialized hardware and software, and is not typically related to application programming.

Related to that point, security is a team effort among the IT administration, operations, and development teams.
All the areas need to be covered to call a system or an application secure. You might painstakingly architect, design,
and implement a secure application, but if the platform running the software is not hardened or patched diligently,
you are opening your system to attacks. Similarly, if you have a sound and secure platform and infrastructure, yet you
don’t design or code the right way, you are equally vulnerable. One coding bug related to SQL injection is all it takes to
open up your application to attacks, even if your design, architecture, and infrastructure are top notch. However, this
book is for software developers, designers, and architects, and throughout its chapters, you will see that the focus is on
integrity and confidentiality aspects of the CIA triad from a programming perspective.

From an IT operations perspective auditing is an important aspect. We have authentication, authorization, and
other protection mechanisms in place, but there could be legal or business requirements to keep track of activities in
the application, in terms of who does what. This is called security auditing, covered in Chapter 15.

Finally, a short note on nonrepudiation, a term that is typically seen in a legal context. To repudiate is to deny,
so nonrepudiation is basically ensuring that someone cannot deny something. A digital signature based on an X.509
certificate is very common to ensure nonrepudiation. Signing and encryption using certificates are covered in Chapter 6,
but there is no coverage specific to nonrepudiation, as the legal requirements can vary. Figure 1-2 provides an
overview of the security topics discussed throughout the book, along with the chapters in which they are covered.

Internet
Explorer

Active
Directory

Kerberos Token

OAuth 2.0
AuthZ

Endpoint

AD FS

WS-Trust

Access Token
(SWT/JWT)

Client

Internet

Transport Security (HTTPS)
Message Security (Symmetric and Asymmetric Encryption/Signing)

Authentication
Knowledge Factors – Basic, Digest, Windows, Forms
Ownership Factors – PSK (API Key), Client X.509 Certificate, SAML Token
Two-Factor Security – Google Authenticator (HOTP/TOTP)

Web API

Windows OS
OS Patching, Updation and Hardening
Least Privileged Windows Account

IIS
Dynamic IP Restrictions Extension
IIS Logging
Windows Authentication

ASP.NET Web API
Auditing and Logging
Input Validation (Model Binding, Data Annotations)
Exception Handling

.NET Framework/ASP.NET
Identity Management, Authorization – CBAC/RBAC
Web.Config Encryption
ASP.NET Modules (WAM, DAM, FAM, UAM)

Database

Data Encryption
Password Hashing
Parameterized Queries / ORM
Least Privileged Database User

HTTP
Web Caching

ETags
CORS

Cookies
HTTP Authorization

(Basic/Digest/Bearer)

6

4

4 9

10

11

12

13

9

97

28

9

15

15

5

15

4

15

15
15

6

8

IIS

.NET / ASP.NET

Windows OS

ASP.NET Web API

Firewall
(Ports 80, 443)

SAML Token
(RST/RSTR)

Filters
Handlers

3
8

14

SPNEGO

Figure 1-2.  Security overview with chapter references

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Welcome to ASP.NET Web API

11

Summary
We looked at what a web API is, what ASP.NET Web API is, and why we need this new ASP.NET Web API
when there is WCF. We looked at a quick example to get a taste of how easy it is to create a web API with very
few lines of code, preferring convention over configuration. We then reviewed the typical scenarios, where
ASP.NET Web API brings value to an application or system architecture. Finally, we reviewed a primer on
security, specifically information security with a focus on the confidentiality and integrity aspects of the
CIA triad.

www.it-ebooks.info

http://www.it-ebooks.info/

13

Chapter 2

Building RESTful Services

One of the important characteristics of the popular web APIs in use today is that they are RESTful services, or at least
they are not SOAP based.

Just because I have built an HTTP service that handles XML or JSON payloads and respond to HTTP methods
such as GET, POST, PUT, and DELETE, I cannot claim that I have built a RESTful service. In this chapter, we see what it
takes for an HTTP service to be called RESTful. We then build our first web API, a simple Hello-World API.

What Is a RESTful Service?
Representational State Transfer (REST) is an architectural style. The term REST was introduced and defined by Roy T.
Fielding in his doctoral dissertation in the year 2000. A service that conforms to the REST constraints is referred to as
being RESTful. To be RESTful, a service has to conform to the following mandatory constraints.

1.	 Client-server constraint, which is based on the separation of concerns, is about
separating user interface concerns from data storage concerns. Clients are not concerned
with data storage, which is a concern of servers, and servers are not concerned with the
user interface or user state, which are concerns of clients.

2.	 Stateless constraint is about each request being an independent self-contained unit
with all the necessary information for the server to service the request without looking at
anything else for the context.

3.	 Cache constraint is about the server being able to label a response as cacheable or not,
so that the client handles the response appropriately from the point of view of later use.

4.	 Layered constraint is about composing the system into layers, with each layer being
able to see and interact with only its immediate neighbor. A layer cannot see through
its neighbor. Between the client and server, there could be any number of
intermediaries—caches, tunnels, proxies, and so on.

5.	 Uniform interface constraint is about providing a uniform interface for identification of
resources, manipulation of resources through representations, self-descriptive messages,
and hypermedia as the engine of application state.

How can we build a service that satisfies the given constraints using the ASP.NET Web API framework? Client-server
constraint is an easy one to satisfy out of the box. ASP.NET Web API is all about responding to the client request with the
data, without bothering about client state or how data will be presented to the end user.

Stateless constraint can also be easily satisfied out of the box, unless something horrible is done such as using the
ASP.NET session state from the web API.

ASP.NET MVC supports the OutputCache attribute that can be used to control output caching. ASP.NET Web API
has no support out of the box, but it is easy to roll out our own action filter attribute. The bottom line is that the

www.it-ebooks.info

http://www.it-ebooks.info/

s

14

Cache-Control response header is the lever ASP.NET Web API can use to label a response as cacheable or not. By
default, Cache-Control is set to no-cache and the response is not cached. Chapter 4 covers the topic of web caching,
including ETags.

Layered constraint is more along the infrastructure line—proxies, firewalls, and so on. There is nothing special
that needs to be done from ASP.NET Web API to satisfy this constraint.

Uniform interface constraint includes the following four constraints and is a key factor in deciding if an HTTP
service is RESTful or not.

1. Identification of resources

2. Manipulation of resources through representations

3. Self-descriptive messages

4. Hypermedia as the engine of application state (HATEOAS)

We now look at uniform interface constraint in detail through each of the four constraints.

Identification of Resources
A resource is any data that a web API sends to its clients. Examples could be a product that your company sells,
a purchase order received from a buyer, a list of employees in your company, or an individual employee in a
department. In the real world, a product or an employee could be uniquely identified through an identifier, such as a
product ID or an employee ID.

In the case of RESTful web services, a resource is identified by a URI. An employee with an identifier of 12345 will
be represented by http://server/employees/12345. In the case of ASP.NET Web API, the URI can be slightly different
and it includes api by default in the URI, so it will be more like http://server/api/employees/12345. If you fire up an
instance of Internet Explorer, type that URI in the address bar, and press Enter, Internet Explorer does an HTTP GET
and you will get the JSON representation of the resource, which is an employee with the ID of 12345 in this case.

From the .NET code point of view (see Listing 2-1), the corresponding class will be EmployeesController, which
is a subclass of ApiController and the method that executes to create the resource representation to be sent back to
the client in its Get(int) method.

Listing 2-1. Identification of Resources

public class EmployeesController : ApiController
{
 public Employee Get(int id)
 {
 // return employee
 }

 public IEnumerable<Employee> GetAllEmployees()
 {
 // return all employees
 }
}

In Listing 2-1, the resource that is a noun has the URI representation of http://server/api/employees/12345.
This resource was accessed through GET HTTP method, which is the verb. Like one single employee, a list of
employees is also a resource and its identifier will be http://server/api/employees. The corresponding method is
GetAllEmployees(), which returns IEnumerable<Employee>.

www.it-ebooks.info

http://server/employees/12345
http://server/api/employees/12345
http://server/api/employees/12345
http://server/api/employees
http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

15

Manipulation of Resources Through Representations
The example of a user typing http://server/api/employees/12345 in Internet Explorer can be described as a
user requesting a resource using the GET verb and getting back the employee JSON, which is the representation of
the resource. GET is guaranteed not to cause any side effect and is said to be nullipotent; nothing happens to the
system’s state, even when called multiple times or not called at all. In other words, the system state will be the same
for all the following scenarios: (1) method was not called at all, (2) method was called once, and (3) method was
called multiple times.

Other important verbs are POST, PUT, and DELETE. POST is for creating a new resource, PUT is for updating an
existing resource, and DELETE is for deleting an existing resource. PUT and DELETE are idempotent; the effect to the
system state will be the same as that of the first call, even when called multiple times subsequent to the first call.

To create a new employee, the client sends a POST request, with the new employee (JSON or XML
representation) in the body of the request. This request gets mapped to a method with a name starting with Post,
which is Post(Employee) in this case.

Updating an employee is the same as creating a new employee except that the PUT verb is used and mapping is
based on the name starting with Put. One important difference compared to POST is that PUT is idempotent. If a user
sends multiple requests to update an employee to the same state, no error must be sent back.

Deleting an employee is similar except that a resource representation is not needed. A DELETE request against
the URI will be sufficient to delete the resource. Similar to PUT, the DELETE method is also idempotent. Even if the
underlying data source sends an error back when the employee to be deleted no longer exists, because it is already
deleted in response to the previous request, no error must be sent back.

See Listing 2-2 for an example of how ASP.NET Web API supports manipulation of resources through different
action methods.

Listing 2-2.  Manipulation of Resources

public class EmployeesController : ApiController
{
 public Employee Post(Employee human)
 {
 // Add employee to the system
 }
 
 public void Delete(int id)
 {
 // Delete employee from the system
 }
 
 public void Put (Employee employee)
 {
 // Update employee in the system
 }
}
 

www.it-ebooks.info

http://server/api/employees/12345
http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

16

For all the preceding actions, a status code is the means through which the status of the action is
communicated back. By default it is 200 – OK, indicating success. As a special case, 201 – Created gets sent for
POST, when a resource was created. 401 – Not authorized gets sent when a user requests an action on a resource
that requires the user to be authenticated and that user has either not provided the credentials or provided invalid
credentials. 404 – Not Found gets sent when the user has requested an action on a resource that does not exist.
There are multiple other status codes.

We will see in detail how ASP.NET Web API supports some of these status codes in Chapter 4.

Self-Descriptive Messages
A resource can have multiple representations, JSON and XML being just two examples. A request body having a
specific representation of a resource must have a self-description of the representation so that it is parsed and handled
correctly. The same holds for responses.

In ASP.NET Web API, the Multipurpose Internet Mail Extensions (MIME) type determines how the web API
serializes or deserializes the message body. There is built-in support for XML, JSON, and form-url encoded data.

Let’s take the case of a request to create a new employee, the corresponding action method shown in Listing 2-3,
to review a few scenarios.

Listing 2-3.  Self-Descriptive Messages

public Employee Post(Employee value)
{
 // Create the new employee and return the same
}

Table 2-1.  Manipulation of Resources

Action Resource
Identifier

Verb Request Body Response Body

List of all
employees

http://server/
api/employees

GET None JSON/XML representation of the resource
requested, which is the list of employees.

Get a
specific
employee

http://
server/api/
employees/12345

GET None JSON/XML representation of the resource
requested, which is the specific employee.

Create
a new
employee

http://server/
api/employees

POST JSON/XML
representation of the
resource getting added,
which is the new
employee

JSON/XML representation of the resource,
which is the new employee that just got
added into the system. The difference
between this representation and the one
in the request body could be that the
employee ID that got generated by the
system could be present in the response
representation.

Update an
existing
employee

http://
server/api/
employees/12345

PUT JSON/XML
representation of
the resource getting
updated

None

Delete an
existing
employee

http://
server/api/
employees/12345

DELETE None None

www.it-ebooks.info

http://server/api/employees
http://server/api/employees
http://server/api/employees/12345
http://server/api/employees/12345
http://server/api/employees/12345
http://server/api/employees
http://server/api/employees
http://server/api/employees/12345
http://server/api/employees/12345
http://server/api/employees/12345
http://server/api/employees/12345
http://server/api/employees/12345
http://server/api/employees/12345
http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

17

Scenario 1: JSON Representation
Here is an example of a request–response message pair with JSON being the content type for both messages. The
web API determines the media-type formatter to be used based on the content type. Because it is JSON, it uses
JsonMediaTypeFormatter to deserialize JSON in the CLR object of type Employee named value. Again on the way out,
the CLR object to be returned, in this case an object of Employee type, is serialized into JSON.

If the request content type comes in as XML, XmlMediaTypeFormatter would have been used to deserialize and
this whole process is seamless to the action method code, as it always receives the Employee object. This is one of the
powerful features of ASP.NET Web API.
 
Request Sent
POST /api/employees HTTP/1.1
Content-Type: application/json; charset=utf-8
Content-Length: 49
 
{"Name":"John Q Law", "Department":"Enforcement"}
 
Response Received
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
 
{"Department":"Enforcement","Id":"123","Name":"John Q Law"}

Scenario 2: No Content Type
What if there is no content type specified in the request header? ASP.NET Web API will not know what to do with the
message. The web API returns 500 – Internal Server Error with a message that no MediaTypeFormatter is available to
read the object of type Employee with media type undefined.
 
Request Sent
POST /api/employees HTTP/1.1
Content-Length: 49
 
{"Name":"John Q Law", "Department":"Enforcement"}
  
Response Received
HTTP/1.1 500 Internal Server Error
Content-Type: application/json; charset=utf-8
 
{"ExceptionType":"System.InvalidOperationException","Message":"No 'MediaTypeFormatter' is available
to read an object of type 'Employee' with the media type ''undefined''.","StackTrace":" at
System.Net.Http.ObjectContent.SelectAndValidateReadFormatter(..."}

Scenario 3: XML Representation
If the content type is specified for XML and the XML representation of the resource is sent in the request message
body, it starts to work again. The web API uses XmlMediaTypeFormatter, although this time around the resource sent
back in the response also becomes XML.
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

18

Request Sent
POST /api/employees HTTP/1.1
Content-Type: application/xml; charset=utf-8
Content-Length: 80
 
<Employee><Name>John Q Law</Name><Department>Enforcement</Department></Employee>
 
Response Received
HTTP/1.1 200 OK
Content-Type: application/xml; charset=utf-8
 
<?xml version="1.0" encoding="utf-8"?><Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><Id>123</Id><Name>John Q Law</
Name><Department>Enforcement</Department></Employee>

Scenario 4: Mix and Match
It is possible to mix and match, that is, send the XML representation of the resource in the request body and ask for
JSON to be returned or vice versa. If a web API is capable of handling the content type specified in the Accept header,
it will send the resource in that representation. In the following example request, the client sends the request body as
XML and indicates the same by specifying application/xml in Content-Type. However, the client prefers the response
to be returned as JSON and indicates that preference by specifying application/json in the Accept header.

Request
POST /api/employees HTTP/1.1
Content-Type: application/xml; charset=utf-8
Accept: application/json
Content-Length: 80
 
<Employee><Name>John Q Law</Name><Department>Enforcement</Department></Employee>
 
Response
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
 
{"Department":"Enforcement","Id":"123","Name":"John Q Law"}
 

The key point to note in this transaction is that the client asks and not tells the server. If the Accept header
of application/pdf, application/json is sent in the request, ASP.NET Web API will not be able to send the response
back as PDF, by default, and hence switches to the second choice, JSON. This process is therefore called Content
Negotiation.

It is interesting to note that a web API switches to XML if the Accept header has just application/pdf. It can’t send
a PDF for sure but there is nothing else specified as the second choice, so it switches over to the MIME type of the
request, which is XML in this case.

Hypermedia as the Engine of Application State
The HATEOAS constraint requires a client to enter a RESTful service through a fixed URL. From that point onward,
any future action a client takes will be based on what the client gets to discover within the resource representation
returned by the service.

www.it-ebooks.info

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

19

Let’s take an example. A client makes a GET request to the resource with identifier http://server/api/
employees. In other words, the client is asking for a list of employees. As the next step, if the client needs to GET an
employee, how will it go about doing it? One option is that the client “knows” it! Then, the client has to know quite
a bit about the service. Another option is hypermedia, or hypertext. A service that satisfies the HATEOAS constraint
returns not just data, but data and links.

In the previous example of the employee listing, each employee can have multiple links: one to look at employee
details, or one perhaps to fire him, for example. Of course, the links available will be based on what the client is
authorized to do. For a user who is not authorized to fire employees, there is no point in sending the firing link. Here is
an example JSON representation of an employee resource with links.
 
{
 "Department":"Enforcement",
 "Id":"123",
 "Links":[
 {
 "Rel":"GetDetails",
 "Url":"/api/employees/56789"
 },
 {
 "Rel":"Fire",
 "Url":"/api/employees/56789"
 }
],
 "Name":"John Q Law"
}
 

One obvious problem is what the client will do with the links. To get details, GET has to be executed and for the
next one, DELETE, probably, but how will the client know? The answer to the question is forms, which will contain all
the needed information for the client to make the next move.

HATEOAS is not supported by ASP.NET Web API out of the box, if you expect a web API to provide links or forms
intelligently without ever writing a line of code. However, it is possible to include them in the resource representation
returned by writing your own custom code.

Implementing and Consuming an ASP.NET Web API
Let us now go through the steps of creating an ASP.NET Web API that returns a list of employees. Our web API, in this
case, will be consumed by an ASP.NET MVC Razor view through JQuery AJAX. Fire up Visual Studio and create a new
web project as shown in Figure 2-1. I’m naming it TalentManager.

www.it-ebooks.info

http://server/api/employees
http://server/api/employees
http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

20

Select the web API template in the next screen, as shown in Figure 2-2.

Figure 2-1.  New ASP.NET MVC 4 project

Figure 2-2.  Web API template

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

21

Note■■  I ’m using Visual Studio 2012, which comes with ASP.NET MVC 4.0 out of the box. Also, I’m using the .NET
Framework 4.5. All the samples in this book will target the .NET Framework 4.5.

If you are using Visual Studio 2010 and targeting the .NET Framework 4.0, you will need to download ASP.NET MVC 4.0
from www.asp.net/web-api and install it. If you have done so, you will get an option to create an ASP.NET MVC 4 Web
application. If you have not downloaded MVC 4.0, now is the time to do so!

Delete the ValuesController added by Visual Studio and create a new WebAPI controller by right-clicking
the controller folder in Solution Explorer and selecting Add ➤ Controller in the pop-up menu. Select Empty API
Controller as Template in Scaffolding Options and assign a name such as EmployeesController. Copy and paste the
code from Listing 2-4. Create the Employee class under the Models folder.

Listing 2-4.  Get Employee – ASP.NET Web API

public class EmployeesController : ApiController
{
 public Employee Get(int id)
 {
 return new Employee()
 {
 Id = id,
 Name = "John Q Law",
 Department = "Enforcement"
 };
 }
 
 public IEnumerable<Employee> GetAllEmployees()
 {
 return new Employee[]
 {
 new Employee()
 {
 Id = 12345,
 Name = "John Q Law",
 Department = "Enforcement"
 },
 new Employee()
 {
 Id = 45678,
 Name = "Jane Q Taxpayer",
 Department = "Revenue"
 }
 };
 }
}
 

www.it-ebooks.info

http://www.asp.net/web-api
http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

22

public class Employee
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Department { get; set; }
} 

Note■■  U nlike the general naming convention followed in .NET, the controller name is plural. This is done so that the
resulting URI of the resource follows the REST conventions. We have two action methods here: one to handle GET on
a specific employee resource using an identifier and the other one to handle GET requests on all employees with
corresponding return types, Employee in the former case and IEnumerable<Employee> in the latter.

When Visual Studio created the web project, it created a HomeController with an action method named Index.
Let’s go to the corresponding view View/Home/Index.cshtml and replace the content with code from Listing 2-5.

Listing 2-5.  Get Employee - JQuery

@section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#search').click(function () {
 $('#employees').empty();
 
 $.getJSON("/api/employees", function (data) {
 $.each(data, function (i, employee) {
 var content = employee.Id + ' ' + employee.Name;
 content = content + ' ' + employee.Department;
  
 $('#employees').append($('', { text: content }));
 });
 });
 });
 });
 </script>
}
<div>
 <div>
 <h1>
 Employees Listing
 </h1>
 <input id="search" type="button" value="Get" />
 </div>
 <div>
 <ul id="employees" />
 </div>
</div>
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

23

If you now go to /Home/Index of the MVC application and click the Get button, it will get the JSON from Web
API /api/employees and render the data in the form of an unordered list (see Figure 2-3).

Figure 2-3.  Employees listing user interface

Our First Attempt in Securing a Web API
The web API and the web application we have developed so far, when deployed in an Internet Information Services
(IIS) server opened up to the Internet, can be accessed by anyone who knows the URL. This is undesirable for most,
if not all, web applications. For public-facing web sites, this is acceptable, but web applications typically have
restricted access. A mechanism for authenticating the users will be required at a bare minimum.

There are multiple ways of authenticating users. If an ASP.NET web application is targeted exclusively for an
enterprise user base, Windows Active Directory–based authentication is a great option. If the user base can extend
beyond the reach of Active Directory, Forms Authentication is a popular choice for both ASP.NET MVC and ASP.NET
WebForms, with user credentials typically stored in a database against which authentication is performed. 

Forms Authentication
Forms authentication is a ticket-based mechanism. An authentication ticket gets created at the time of user login,
stuffed into a cookie (typically), and sent back to the browser for the browser to keep sending the cookie with the
ticket in all subsequent requests until the time cookie expires. As long as the cookie is sent by the browser and the
cookie contains the valid ticket, the user is considered an authenticated user.

Forms authentication is applicable to any kind of ASP.NET application: WebForms, MVC, or even web APIs.
In the TalentManager application, we have the MVC controller and the web API controller in the same project or
application, so we try to secure them both with forms authentication.

When IIS receives a request, it will try to authenticate the user. If anonymous authentication is selected, as is the
case by default, IIS creates a token to represent the anonymous user and passes that on to ASP.NET. Next, ASP.NET
will try to authenticate based on the mode attribute of the authentication element defined in Web.config. The default
configuration is <authentication mode="None" />, which means ASP.NET will also not authenticate the user.

www.it-ebooks.info

http://www.it-ebooks.info/

s

24

To enable forms authentication, we need to make sure a specific IIS module, FormsAuthenticationModule,
is hooked into the life cycle of our ASP.NET application. This can be accomplished by removing the default
authentication element and adding a new entry as shown in Listing 2-6.

One more step is required to deny access to anonymous users and make authentication mandatory: the addition
of one more element, authorization (see Listing 2-6).

Listing 2-6. Web.config Entries

<authentication mode="Forms">
 <forms loginUrl="Login"/>
 </authentication>

<authorization>
 <deny users="?"/>
</authorization>

With these two config elements in place, forms authentication begins to take effect. UrlAuthorizationModule,
another module in the pipeline, determines whether or not the current user is authorized to access the requested
URL. This is where the second configuration setting in Listing 2-6 comes into play.

By specifying that all paths are denied to nonauthenticated users, UrlAuthorizationModule sends
a 401 – Unauthorized response when a nonauthenticated user accesses any path. However, a response with a 401
status code never gets sent back to the client, because FormsAuthenticationModule reads this and redirects to
LoginController's default action, as specified in the loginUrl attribute, in the preceding example configuration.

The user at this point provides the credentials (user ID and password) and submits the form. LoginController
validates the credentials, creates the ticket, and writes the cookie into response.

The browser, on receiving this cookie, starts to send the cookie in all subsequent requests.
FormsAuthenticationModule reads the cookie and establishes the identity based on the authentication ticket in the cookie.

Figure 2-4 shows the sequence diagram of the interactions associated with forms authentication.
FormsAuthenticationModule and AuthorizationModule are from the ASP.NET framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

25

Figure 2-4.  Forms authentication sequence

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

26

To enable forms authentication for the Talent Manager application, first modify the Web.config file, as shown in
Listing 2-6. Then, add an empty MVC controller with the name LoginController, as shown in Listing 2-7.

Listing 2-7.  Login Controller

public class LoginController : Controller
{
 public ActionResult Index(string returnurl)
 {
 return View(); // present the login page to the user
 }
 
 // Login page gets posted to this action method
 [HttpPost]
 public ActionResult Index(string userId, string password)
 {
 if (userId.Equals(password)) // dumb check for illustration
 {
 // Create the ticket and stuff it in a cookie
 FormsAuthentication.SetAuthCookie("Badri", false);
 return RedirectToAction("Index", "Home");
 }
 
 return View();
 }
}
 

The action method that handles HTTP POST is where the actual authentication (i.e., comparing the user-entered
credentials against the stored credentials) happens. If credentials are valid, an authentication ticket gets created
and stuffed into a cookie through the call to FormsAuthentication.SetAuthCookie(). For the sake of brevity, the
authentication I’m doing is just making sure the user ID and password are the same.

Right-click Index action method and select Add View in the shortcut menu, then click Add in the subsequent
dialog box. Copy and paste the code in Listing 2-8 into Index.cshtml under the Login folder. The view corresponding
to the Index action of the Login controller will be the login page; it gets the user ID and password from the user and
posts it back to itself.

Listing 2-8.  Index View of LoginController

<h1>Sign In</h1>
@using (Html.BeginForm())
{
 <div class="editor-label">
 @Html.Label("userId")
 </div>
 <div class="editor-field">
 @Html.TextBox("userId")
 </div>
  
 <div class="editor-label">
 @Html.Label("password")
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

27

 <div class="editor-field">
 @Html.Password("password")
 </div>
  
 <input type="submit" value="Login" />
}
 

Now, with the changes to Web.config and the addition of LoginController, the application is no longer a
free-for-all application. When you go to Home/Index, which is the home page, you get redirected to the login page.
On entering the right credentials (in our case any string as user ID and the same as password), you come back to
the home page. If you then click Get, the view makes a call to ASP.NET Web API and displays the list of employees
correctly. Very nice!

Note■■  A cookie is not mandatory for forms authentication and it is possible to send the ticket in a query string, but it
gets really ugly to see those in every request. It is not good from a security standpoint, either.

One important point to note in the sequence associated with forms authentication is the
FormsAuthenticationModule creating the GenericPrincipal object and attaching it to HttpContext and
Thread.CurrentPrincipal. Identity associated with the principal will be System.Web.Security.FormsIdentity
with the same name that is passed in while creating the ticket.

It all seems to be working very well, only because ASP.NET Web API is accessed only after the home page was
accessed. Nothing prevents a direct HTTP GET to /api/employees. There are multiple ways to do this. The simplest
way is to type the URI of http://localhost:<port>/talentmanager/api/employees directly in the browser. If you
do that, you get directed to the login page, which is not nice at all! You are accessing an API—a service—and you get
redirected to a web page. If you do not use a browser but, say, a C# program that uses HttpClient, you will be getting a
302 redirect. It is nice for a web application but not so nice for a web API.

Although forms authentication has served us well in the preceding example of accessing an API through the web
app, it is not always an ideal solution to securing ASP.NET Web API. For nonbrowser clients, forms authentication
feels like fitting a square peg into a round hole!

The problem with using forms authentication with ASP.NET Web API is not just about getting a 302. The problem
of 302 redirects can be worked around by not specifying the authorization element in Web.config and instead adding
an instance of System.Web.Http.AuthorizeAttribute to the HttpFilterCollection and an instance of
System.Web.Mvc.AuthorizeAttribute to GlobalFilterCollection, as shown in Listing 2-9.

Listing 2-9.  Enabling Authorize Filter at Global Level

public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 
 config.Filters.Add(new AuthorizeAttribute());
 }
}
 

www.it-ebooks.info

http://localhost:%3cport%3e/talentmanager/api/employees
http://www.it-ebooks.info/

Chapter 2 ■ Building RESTful Services

28

public class FilterConfig
{
 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 filters.Add(new AuthorizeAttribute());
 }
}
 

This will have the same effect of redirecting all unauthorized requests to the login page in the case of MVC and
sending back a 401 response code in the case of a web API.

However, the real problem is the forms authentication itself. It is a mechanism designed for web applications that
have the cookie and redirect support and is not a natural fit for RESTful, stateless ASP.NET Web APIs. Cookies do bring
Cross-Site Request Forgery (CSRF) attacks into the equation as well (see Chapter 15 for more information on CSRF).
We are in need of security mechanisms better than what forms authentication can provide, to be a better fit for
ASP.NET Web API!

Summary
Not all HTTP services are RESTful services. Just because an HTTP service that handles XML or JSON payloads
responds to HTTP methods such as GET, POST, PUT, and DELETE, it is not always true that this service is RESTful.
We looked at Roy Fielding’s constraints that an HTTP service must meet to be called RESTful.

We built our first web API and consumed the API from an ASP.NET MVC application using JQuery AJAX. We tried
to secure our web API using the popular forms authentication. The takeaway from that attempt is that techniques
popular with other ASP.NET applications—Web Forms and MVC—most notably forms authentication, might not be
appropriate for ASP.NET Web API.

www.it-ebooks.info

http://www.it-ebooks.info/

29

Chapter 3

Extensibility Points

ASP.NET Web API is a framework. The key defining attribute of a framework is that it is in control of the execution
flow and calls the application-specific code written by developers like us at the appropriate time. We don’t call the
framework code but it calls us, in line with the Hollywood principle. The most fundamental lever that we use to
harness the power of the ASP.NET Web API framework in building a service is the ApiController subclass that we
write. It is the business end where all the application-specific action happens.

The ASP.NET Web API framework receives an HTTP request and goes about processing it. At some point in
time during the processing, it calls the method we have implemented in the ApiController subclass passing in the
parameters, if any, and takes the output returned by our application-specific code and continues the processing to
ultimately send an HTTP response back to the client. The sequence of steps that happens from the time a request is
received to the time the response is sent back defines the processing architecture of ASP.NET Web API.

ASP.NET Web API, being a framework, has various points of extensibility built in, for us to hook our code in and
extend the processing. In this chapter, we look at the processing architecture of ASP.NET Web API framework with
focus on the extensibility points.

The What and Why of Extensibility Points
Why do you need to bother about the processing architecture? The more you know about something, the easier it is to
secure the same. Securing a black box is a very difficult task, for we do not know what it does. A good understanding of
the processing architecture, the extensibility points available, and the sequence of steps puts us in a position where we
can deal with malicious intentions at the earliest available opportunity.

You also might wonder why you need to understand the extensibility points. The core concerns of an ASP.NET
Web API powered service stay in the action methods of ApiController subclasses. Security, being a cross-cutting
concern, does not fit directly into ApiController subclasses.

The most simplistic approach to implementing security (which is far too simple to be deemed production
strength) is to have the code in separate classes and call them from the action method. By doing so, we are mixing
concerns. This mixing results in a code base that is hard to manage, with code duplicated all over the place. Most
important, a failure to call the method of the appropriate class due to lack of knowledge or just plain sloppiness results
in security loopholes.

Another possible approach is to create a base ApiController class with security-related code from which all the
controllers inherit, instead of inheriting directly from ApiController. Inheritance has its own disadvantages in terms
of flexibility and there will always be a developer who inherits his controller class directly from ApiController.

What other options do we have? Enter extensibility points. They offer a standard set of extension points to hook
our security code in. All the developers on the team need not bother about the security-specific code. A designated
one or few can extend the web API processing through these points. The ASP.NET Web API framework calls this code
at the appropriate point in time just as it calls the action method in ApiController. By leveraging the extensibility
points, we are making sure security code is not repeated and the overall application code stays clean and modular.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

30

Moving the responsibility of calling the security-related code to ASP.NET Web API from the developers means we are
idiot-proofing our application to a greater extent. After all, ASP.NET Web API is a framework and calling our code is
what it is good at!

Finally, what are all the extensibility points available for us to use? There are several, but we focus mainly on two
of them—filters and message handlers—because these are the most relevant ones from the security point of view.
Both have merits and drawbacks. The requirements at hand typically determine which one to choose over the other.

ASP.NET Web API Life Cycle
First, let us take a look at the ASP.NET Web API life cycle for web hosting (ASP.NET) before we dive into the depths of
filters and message handlers. The application domain gets created first. Then, ASP.NET creates core objects such as
HttpContext, HttpRequest, and HttpResponse. The ASP.NET Web API application is started by creating an instance
of the WebApiApplication class, which is derived from the HttpApplication class. The Application_Start event
gets fired and the corresponding handler in Global.asax.cs is called. So far, the flow is just like any other ASP.NET
application.

The application startup maps the route template, as shown in Listing 3-1, by calling
WebApiConfig.Register(GlobalConfiguration.Configuration). MapHttpRoute, an extension method to
RouteCollection, adds a new HttpWebRoute object, with the Handler property set to HttpControllerRouteHandler
singleton, to RouteTable.Routes.

Listing 3-1.  Map Route 

config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 

The application object goes about handling the request in the usual ASP.NET style and gets to the point where a
route handler has to be chosen. RouteTable is used to get the matching route handler (HttpControllerRouteHandler)
corresponding to the request and the GetHttpHandler() method is called off the handler, which returns a new
instance of HttpControllerHandler.

HttpControllerHandler converts the ASP.NET-specific HttpRequest into a web API abstraction of
HttpRequestMessage and dispatches it to an instance of HttpServer, which is a DelegatingHandler. Figure 3-1
illustrates the Web API life cycle and handler pipeline.

www.it-ebooks.info

Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

31

HttpServer is one of the key classes of the web API pipeline, as this is where host agnostic processing starts,
with HttpServer dealing only with the web API abstractions of the request and response, HttpRequestMessage and
HttpResponseMessage, respectively. HttpServer gets the list of delegating message handlers (common to all routes)
configured in Global.asax startup and creates Chinese boxes of handlers (or Russian matryoshka dolls, if you prefer
them to boxes) by setting the InnerHandler property of each handler in such a way that handlers are invoked in a
top-down fashion: The first handler to receive the request is the last one to be passed the response and vice versa.
HttpServer makes sure the last message handler in the all-route message handlers pipeline is HttpRoutingDispatcher.

First up is the per-route message handler pipeline. HttpRoutingDispatcher dispatches to the message handler
specified in the route. If multiple handlers (Chinese boxed through InnerHandler) are specified for the route, all message
handlers are invoked in the same fashion as all-route handlers. HttpRoutingDispatcher makes sure the last message
handler in the pipeline is HttpControllerDispatcher.

HttpContext, HttpRequest, HttpResponse

WebApiApplication : HttpApplication

RouteTable.Routes

HttpWebRoute : Route

Application Domain

HttpControllerRouteHandler : IRouteHandler

RouteHandler
property of type IRouteHandler

HttpControllerHandler
: IHttpAsyncHandler

: IHttpHandler
HttpServer : DelegatingHandler

HttpRoutingDispatcher : DelegatingHandler

AllRoutesHandler1 : DelegatingHandler

AllRoutesHandler2 : DelegatingHandler

HttpControllerDispatcher : DelegatingHandler

PerRouteHandler1 : DelegatingHandler

PerRouteHandler2 : DelegatingHandler

ApiController : IHttpController

HttpRequestBase
[ASP.NET]

HttpRequestMessage
[Web API]

Application
Startup

Added through
GlobalConfigurati
on.Configuration.
MessageHandlers
.Add(Delegating
Handler)

Added through
RouteCollection.Add()

Conversion
happens here

Authorization Filter(s)

Action Filter(s)

Exception
Filter(s)

Binding
happens here

HttpResponseBase
[ASP.NET]

HttpResponseMessage
[Web API]

GetHttpHandler() method
returns IHttpHandler

Figure 3-1.  ASP.NET Web API life cycle and handler pipeline

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

32

HttpControllerDispatcher dispatches to IHttpController (ApiController). The ExecuteAsync() method of
ApiController runs authorization filters, performs model binding, runs action filters, invokes the action method in
the controller, and runs exception filters. As you can see from Figure 3-1, there are two pipelines available: filters and
message handlers (DelegatingHandler). Message handlers run right after HttpServer and hence they have early
visibility in the requests. Filters run right before the action method and hence by the time a request gets to them, that
request could have been through multiple other classes. Both the pipelines are extensible and we now look at filters
and message handlers in depth.

Filters
A filter is a great way to encapsulate a cross-cutting concern like security and apply it to action methods. Filters can
be applied to individual action methods, all methods in an ApiController, or all methods across all controllers by
configuring the filter as a global filter. As shown in Figure 3-1, filters run just before the action method in the pipeline.
This behavior can be considered disadvantageous if you would like to stop malicious requests earlier in the pipeline.
An advantage with filters is the granularity or the level at which they can be applied, which is at the action method level.

Authorize Filter
The Authorize filter is a special out-of-the-box filter because it runs ahead of the normal action filters. There can be
more than one Authorize filter defined per action. An Authorize filter can be specified at the action level or at the
controller level. It can also be added to global filters like GlobalFilters.Filters.Add (new AuthorizeAttribute()).
See Listing 3-2 for an example of an Authorize filter in action.

Listing 3-2.  Authorize Filter 

[Authorize(Roles = "HumanResourceTeamMember")]
public class EmployeesController : ApiController
{
 public IEnumerable<Employee> Get()
 {
 return new List<Employee>()
 {
 new Employee() { Id = 12345, Name = "John Q Human" },
 new Employee() { Id = 23456, Name = "Jane Q Public" }
 };
 }
 
 public Employee Post(Employee human)
 {
 // Add employee to the system
 human.Id = 12345; // Id produced as a result of adding the employee to data store
 return human;
 }
 
 [Authorize(Roles = "ManagementTeamMember")]
 public void Delete(int id)
 {
 // Delete employee from the system
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

33

 public void Put(Employee employee)
 {
 // Update employee in the system
 }
}
 

The Authorize filter attribute accepts a CSV of users or roles authorized to perform the action. When no users
or roles are specified, it just makes sure the identity associated with the principal object is an authenticated identity.
When users or roles are specified, it performs the additional steps of ensuring that the name of the identity associated
with the principal is in the allowed users list or at least one role associated with the principal is present in the roles list.
If any of the authorization checks fail, 401 – Unauthorized is set as the response status code.

Subclassed Authorize Filter
Out of the box, the Authorize filter accepts users and roles as CSV. Unless an application has one or two of these,
it will be very difficult and even impractical to manage.

Also, you don’t want to compile and deploy in production for making authorization adjustments, do you?
Inheriting from the out-of-the-box filter and implementing the application-specific logic is an option. See Listing 3-3
for an example of a subclassed filter.

Since the subclass filter derives from the Authorize filter, the subclass filter inherits the drawback of the parent.
As I mentioned earlier, the security checks happen just before the actual action method executes in the ASP.NET Web
API pipeline.

Listing 3-3.  Subclassed Authorize Filter

public class TimeShareAttribute : AuthorizeAttribute
{
 protected override bool IsAuthorized(HttpActionContext context)
 {
 IPrincipal principal = Thread.CurrentPrincipal;
 // If principal.IsInRole("TimeSharer")
 // Check if current time is between allocated slot start and end times
 // If not, return false
 return true;
 }
 
 // If 401 – Unauthorized is okay for you, no need to override
 protected override void HandleUnauthorizedRequest(HttpActionContext actionContext)
 {
 base.HandleUnauthorizedRequest(actionContext);
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ extensibility points

34

Authorize filters authorize access to individual action methods if applied at the action method level or all
methods in a controller if applied at the controller level. by specifying the Authorize filter globally, it is possible
to enforce authorization checks on all action method invocations across all controllers. imagine a scenario where
you would want to enforce authorization on all methods on a blanket basis except, say, two methods. Will it not
be a nightmare from a maintenance and security standpoint to apply the Authorize filter individually on all the
action methods with the exception of two? Fortunately, there is a special marker filter called AllowAnonymous
that can work with the Authorize filter and help you out of this unpleasant situation. the AllowAnonymous
filter allows us to apply the Authorize filter globally and specify those two methods on an individual basis to be
exempted from the blanket authorization. an important point to note is that the AllowAnonymous filter works only
with the Authorize filter.

ActionFilter
Action filters are the generic filters, as opposed to the Authorize filter which is an out-of-the-box filter meant
specifically for authorization. Action filters are generic enough to be used to encapsulate any cross-cutting concern.
Action filters are classes that inherit from FilterAttribute.

Security is not just about authorization. There are scenarios for which you will need to write an action filter. A use
case for such an action filter is enabling CORS selectively for a few action methods. CORS is covered in Chapter 4. For a
sample implementation of an action filter, refer to Listing 4-7 in Chapter 4, where I use an action filter to enable ETags.

It is quite possible to authenticate and authorize in a custom action filter. If the Authorize filter run is too close
to your comfort level, please be informed that this runs just one step before the action. ApiController runs all the
Authorize filters, performs binding, and starts running action filters. It is possible that so much of the code written
in the application could have been already executed, before execution ever gets here, and all those lines of code are
exposed to servicing an unauthorized user’s request.

Message Handlers
Authorize filters are run by the ApiController’s ExecuteAsync() method. In other words, if you are banking on these
filters to stop unauthorized access, you need to understand that the unauthorized request has come in all the way
through the delegating handlers and is getting stopped just a few steps before the execution of the action.

Better late than never, of course, but if you do not want to let some intruder into your house, will you allow him
all the way to the bedroom door just because you happen to be in the bedroom at that time? You probably want him
stopped even before he sets his foot on your property. If this is the case, you will need to handle the authentication
and authorization somewhere else, preferably in a message handler, which has the opportunity to take care of
unauthorized requests earlier in the pipeline.

Although a message handler running earlier in the pipeline can be advantageous in dealing with malicious
requests at the earliest available opportunity, the message handler runs for all action methods, or at least all the action
methods of a route. This is something to consider when selecting the message handler to solve a problem.

In the ASP.NET Web API pipeline, the first message handler to run is HttpServer. All the other custom message
handlers run after that. A custom message handler is a class that inherits from the class DelegatingHandler. Ideally,
your custom message handler that handles important security aspects like authentication or authorization should
run immediately after HttpServer, as the second message handler in the pipeline. Let us now take an in-depth look at
message handlers. Every second you spend in this section is worth it.

In the ASP.NET Web API message handler pipeline, the incoming request goes through the handlers in order,
starting with HttpServer. In other words, HttpServer gets to look at the request before anybody else. For the outgoing
response, the last handler in the chain gets to see the output first and HttpServer gets to see the response last.

 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

35

This is a great model because your important handlers get to see the request first and they are the last ones to do
anything to the response. If a bad request (whatever the criteria is for the request to be classified bad) comes in, your
important handlers see it first and they can decide if the inner handlers should be allowed to see the request or if the
request should be stopped at that point in the pipeline.

Similarly, on the way out, the important handlers get to decide as late as possible in the pipeline to send the
response out, stop it, or make a last-minute alteration to the response. Figure 3-2 is an illustration of the call sequence.

Request IN Response OUT

HttpServer

Handler1

Handler2

ApiController

Action Method

Figure 3-2.  Chinese boxes of message handlers

To create a message handler, we must inherit from the DelegatingHandler class and override the SendAsync
method. If we must write some code to execute while receiving the request and some other code to execute while sending
the response, it is natural that there will be two methods to override: one for request processing and one for response
processing. However, the power of Task helps us write code for both the cases in one method, as shown in Listing 3-4.

Listing 3-4.  DelegatingHandler 

public class MyHandler40 : DelegatingHandler // Handler for .NET 4.0
{
 protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 // Inspect and do your stuff with request here
  
 // If you are not happy for any reason,
 // you can reject the request right here like this
 
 bool isBadRequest = false;
 if (isBadRequest)
 {
 return Task<HttpResponseMessage>.Factory.StartNew(() =>
 {
 return request.CreateResponse(HttpStatusCode.BadRequest);
 });
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

36

 return base.SendAsync (request, cancellationToken)
 .ContinueWith((task) =>
 {
 var response = task.Result;
 
 // Inspect and do your stuff with response here
 return response;
 });
 }
}
 

In the .NET Framework 4.5, the handler shown in Listing 3-4 can be written with even fewer lines of code, thanks
to the async and await keywords, as shown in Listing 3-5. From this point onward, for coding message handlers we
will stick to the .NET Framework 4.5 style using the async and await keywords because the .NET Framework 4.5 code
is concise and easier to read. Also, at the time of this publication the .NET Framework 4.5 is the latest version.

Listing 3-5.  DelegatingHandler in the .NET Framework 4.5 

public class MyHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 // Inspect and do your stuff with request here
 
 // If you are not happy for any reason,
 // you can reject the request right here like this
 
 bool isBadRequest = false;
 if (isBadRequest)
 return request.CreateResponse(HttpStatusCode.BadRequest);
 
 var response = await base.SendAsync(request, cancellationToken);
 
 // Inspect and do your stuff with response here
 
 return response;
 }
}
 

To hook the handler up in the configuration so that it becomes a part of the Chinese box of delegating handlers,
the handler needs to be added to the MessageHandlers collection as shown in Listing 3-6, in WebApiConfig.cs under
App_Start folder. When set up this way, the handler becomes an all-route handler, which executes for all requests and
responses regardless of the route. It is possible to specify multiple handlers by adding more handlers, as shown
in Listing 3-7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

37

Listing 3-6.  Single All-Route Handler

public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 
 config.MessageHandlers.Add(new MyHandler());
 }
} 

Listing 3-7.  Multiple All-Route Handlers

config.MessageHandlers.Add(new MySecurityHandler());
config.MessageHandlers.Add(new MyHandler());
 

The order in which handlers are added does matter. In this case, MySecurityHandler, which is a more
important message handler that deals with security, is added first, followed by MyHandler. This order ensures
MySecurityHandler gets to inspect the request before MyHandler and vice versa for the response. This way,
MySecurityHandler can perform the necessary security checks such as authentication and authorization before
allowing the request to pass to MyHandler. If need be, MySecurityHandler can short-circuit the processing of a
malicious or bad request and prevent MyHandler or any other code in the pipeline downstream from seeing the
request. On the way out, MySecurityHandler, by virtue of being the first handler in the chain, gets to see the response
as the last handler. This way, it has the final say to pass the response along or make a last-minute decision to not send
a response with a 200 - OK status code and instead send an error.

To hook up a handler specific to a route, the handler can be passed into MapHttpRoute, in WebApiConfig
(under App_Start), as shown in Listing 3-8.

Listing 3-8.  Route-Specific Handlers

public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 var handler = new MyPremiumSecurityHandler()
 {
 InnerHandler = new MyOtherPremiumSecurityHandler()
 {
 InnerHandler = new HttpControllerDispatcher(config)
 }
 };
 
 config.Routes.MapHttpRoute(
 name: "premiumApi",
 routeTemplate: "premium/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional },
 constraints: null,
 handler: handler
);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

38

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
}
 

Listing 3-8 specifies MyPremiumSecurityHandler with MyOtherPremiumHandler as the inner handler, so the order
of execution will be the same as the all-route example. Here the handlers are specific only to the premium route.
For example, GET http://server/premium/employees will result in the handlers participating in the pipeline,
whereas GET http://server/api/products will not engage the handlers.

HTTP Modules
There are extensibility points available to extend the ASP.NET pipeline itself, an HTTP module being one such point.
By implementing an HTTP module, you can have your authentication code execute even before your first all-route
message handler runs. If you have a web API and other resources such as HTTP handlers, pages, or MVC controllers
in the same application and you want to establish identity in one place and share the same, an HTTP module is a great
option.

The following list shows the key points you must consider before designing your authentication mechanism.
This list is from Microsoft’s ASP.NET Web API web site (http://www.asp.net/web-api/overview/security/
authentication-and-authorization-in-aspnet-web-api).

An HTTP module sees all requests that go through the ASP.NET pipeline. A message handler •	
only sees requests that are routed to Web API.

You can set per-route message handlers, which lets you apply an authentication scheme to a •	
specific route.

HTTP modules are specific to IIS. Message handlers are host-agnostic, so they can be used •	
with both web hosting and self-hosting.

HTTP modules participate in IIS logging, auditing, and so on.•	

HTTP modules run earlier in the pipeline. If you handle authentication in a message handler, •	
the principal does not get set until the handler runs. Moreover, the principal reverts back to
the previous principal when the response leaves the message handler.

The last two points are very important considerations for using the components in the ASP.NET pipeline that
expect authentication to happen earlier in the ASP.NET pipeline, when the AuthenticateRequest event was fired and
the same identity to remain through the entire processing of the ASP.NET pipeline.

Message handlers do run earlier in the ASP.NET Web API pipeline, but it could already be late from the
perspective of the components running in the ASP.NET pipeline. If you use a custom HTTP module that you have
written or the out-of-the-box module from ASP.NET that needs an authenticated identity to work, authenticating
in the message handler could be too late. For example, the ResolveRequestCache event is fired right after the
AuthenticateRequestand AuthorizeRequest events. ASP.NET OutputCacheModule or your own custom HTTP
module listening for the ResolveRequestCache event can service the request from the output cache even before the
ASP.NET Web API pipeline starts running. It is worth noting that there is no OutputCacheAttribute available for
ASP.NET Web API at the time of writing of this book.

Also, IIS will not log the principal you could be setting in Thread.CurrentPrincipal from your message handler.
So, if web hosting is a given and you want to leverage ASP.NET fully through its extensibility points, implementing

www.it-ebooks.info

http://server/premium/employees
http://server/api/products
http://www.asp.net/web-api/overview/security/authentication-and-authorization-in-aspnet-web-api
http://www.asp.net/web-api/overview/security/authentication-and-authorization-in-aspnet-web-api
http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

39

your authentication and authorization logic in HTTP modules makes a lot of sense. On the other hand, if you prefer
not extending or leveraging the ASP.NET pipeline and letting the requests come to the ASP.NET Web API pipeline
before any processing starts, using a message handler to perform authentication is a great option.

The flip side of using an HTTP module is that your design is no longer host-agnostic and you are taking a
dependency on web hosting (IIS). I use message handlers throughout this book because it is host-agnostic but you
must be aware of the trade-offs involved in choosing a message handler over HTTP module or vice versa. Listing 3-9
shows an HTTP handler that hooks into AuthenticateRequest and EndRequest events.

Listing 3-9.  HTTP Handler

public class MyHttpModule : IHttpModule
{
 public void Init(HttpApplication context)
 {
 context.AuthenticateRequest += OnApplicationAuthenticateRequest;
 context.EndRequest += OnApplicationEndRequest;
 }

 private static void OnApplicationAuthenticateRequest(object sender, EventArgs e)
 {
 var request = HttpContext.Current.Request;
 var authHeader = request.Headers["Authorization"];
 if (authHeader != null)
 {
 // Authenticate here using the credentials from authorization header

 // On successful authentication, set principal
 var identity = new ClaimsIdentity(new[] {
 new Claim("type", "value") }, "AuthnType");
 var principal = new ClaimsPrincipal(identity);

 Thread.CurrentPrincipal = principal;

 if (HttpContext.Current != null)
 HttpContext.Current.User = principal;
 }
 }

 private static void OnApplicationEndRequest(object sender, EventArgs e)
 {
 var response = HttpContext.Current.Response;

 // Do anything with response such as checking status code and
 // adding response headers
 }

 public void Dispose() { }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Extensibility Points

40

To let this module run in ASP.NET pipeline (integrated), make an entry in Web.config, as shown in Listing 3-10.

Listing 3-10.  Web.config Change

<system.webServer>
 ...
 <modules>
 <add name="MyHttpModule"
 type="namespace.MyHttpModule, assembly"/>
 </modules>
 ...
<system.webServer>

Summary
In this chapter, we looked at the processing architecture of web-hosted ASP.NET Web API and explored the two
important extensibility points available within the ASP.NET Web API pipeline, namely filters and message handlers.

Filters run later in the pipeline but can be applied at the more granular level of the action method. Out of the box,
the Authorize filter can be applied to action methods or at the controller level to enforce authorization. If need be,
the Authorize filter can be extended by subclassing to add more functionality. While the Authorize filter is specific to
authorization, a generic action filter can also be used to add other security-related functions.

Message handlers run earlier in the pipeline and can be chained together to form Chinese boxes of message
handlers, with the first handler in the chain getting to inspect the request first before passing it on to the second in
the chain. On the way out, the first handler will be the last one to inspect the response and hence has the final say
on the response.

We looked at all-route message handlers that get to inspect the request and response for all action methods
across all routes. We also examined route-specific handlers that get to inspect the request and response for action
methods in a specific route.

We leverage the understanding gained from this chapter to implement the security-related code in all the
upcoming chapters, as these extensibility points are fundamental to plug in the security aspect, which is a
cross-cutting concern.

www.it-ebooks.info

http://www.it-ebooks.info/

41

Chapter 4

HTTP Anatomy and Security

The primary benefit of creating an HTTP service is reachability. A broad range of clients in disparate platforms can
consume your HTTP services. A client application on an Apple iPhone running iOS can talk to ASP.NET Web API
hosted in an HP ProLiant server running the Microsoft Windows 2012 OS. Similarly, an application on a Microsoft
Surface tablet running Windows 8 Pro can talk to an HTTP service hosted on the IBM System z. HTTP is the secret
sauce behind these disparate device–platform interactions.

ASP.NET Web API is a framework that makes it easy to build HTTP services. The ASP.NET Web API framework
embraces HTTP instead of fighting against it or abstracting it away. Because the underpinning of an HTTP service
is the HTTP protocol, understanding the protocol is a prerequisite to securing ASP.NET Web API powered HTTP
services. After all, a house is only as strong as its foundation!

A good understanding of HTTP is a must in implementing an HTTP-compliant service. For example, developers
don’t want an HTTP service to send a response with a 200 - OK status code and a message in the body stating
authentication failed because of invalid credentials. Instead, developers who have a good understanding of HTTP
want an HTTP service to send a 401 - Unauthorized status code, which is a standard way of communicating the
authentication failure and hence is understood by all clients.

In this chapter, you learn how to apply the fundamentals of HTTP to create a secure HTTP-compliant service.
You also learn advanced concepts such as caching, ETags, CORS, and HTTPS that are essential to create a production
grade, performant, and secure web API.

HTTP Transaction
HTTP is an application layer protocol based on a reliable transport layer protocol (read TCP). The two endpoints
of the communication based on HTTP are a server and a client. The client sends a request to the server; the server
processes the request and sends a response back to the client that includes a status code denoting if the processing is
successful or not. These steps constitute an HTTP transaction. The client typically is a web browser such as Internet
Explorer, and the server is a web server such as IIS. A web server services multiple clients simultaneously. The HTTP
client initiates an HTTP request by connecting to a port (typically 80) on the web server.

Web servers host resources that are uniquely identified through an identifier called the Uniform Resource
Identifier (URI). The Uniform Resource Locator (URL) is a URI—it identifies a resource but it also specifies how a
representation of a resource can be obtained. For example, http://www.server.com/home.html is a URL that includes
three parts.

1.	 Scheme, which is http://. The scheme denotes the protocol used (HTTP).

2.	 Server, which is www.server.com. The server is the server that hosts the resource.

3.	 Resource path, which is /home.html. The resource path is the path of the resource on
the server.

Figure 4-1 illustrates a typical HTTP transaction.

www.it-ebooks.info

http://www.server.com/home.html
http://www.server.com/
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

42

A client requests the server to take an action on a resource. There is a noun and a verb associated with the
request. The noun is the resource identified by the URI. The verb is the action or the HTTP method. In Figure 4-1,
the client requests GET on /home.html. The server responds with a 200 OK status code and sends the text/html
representation of the resource. The server specifies the representation (text/html) in the Content-Type response
header. The content type is also called the media type.

HTTP Request
An HTTP request has the request line as the first line of the request. The request line starts with the HTTP method
followed by a space, followed by the URI of the resource requested, a space, and then the HTTP version. The request
line is terminated by a Carriage Return (CR) and a Line Feed (LF) character, as shown in Figure 4-2.

GET /home.html HTTP/1.1
Host:www.server.com

Request

Response

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 1234

<html>.....</html>

Server
www.server.com

Client

Figure 4-1.  HTTP transaction

GET /home.html HTTP/1.1

Space Space

HTTP
Method

Resource URI HTTP
Version

CRLF

Figure 4-2.  Request line

Accept: text/html

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)

Host: server.com
Key Value

CRLF

CRLF

CRLF

CRLF

Figure 4-3.  Request headers

Following the request line are the request headers. The header fields are colon-separated key–value pairs,
terminated by a CRLF, just like the request line. The end of the header fields is indicated by an empty field—two
consecutive CRLF pairs—as shown in Figure 4-3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

43

Finally, following the request headers is the optional request body. Depending on the HTTP method used, the
request body can be present or absent.

Request Headers
The request headers allow a client to send additional information about the request or the information about the
client itself to the server. Although there is no limit specified for the number of headers or the length of the headers,
for practical reasons there is a limit imposed by the client and the server participating in a transaction. The host is the
only mandatory request header for HTTP 1.1. The User-Agent header has the user agent string and identifies the user
agent that is making the request. Although this is not mandatory, this header is almost always present.

In Chapter 2, we examined a few request headers. We saw how the Accept and the Content-Type headers are
used in the content negotiation by ASP.NET Web API. The most important header from the point of view of security is
the Authorization header, which is used for sending the credentials for authentication. We see in later chapters how
this header is used for securing ASP.NET Web API. There are many headers related to web caching and ETags. We
look at them at work later in this chapter. The Accept-Language and Accept-Encoding headers are not supported by
ASP.NET Web API out of the box at the time of writing this book.

In addition to the standard headers, there are nonstandard headers named with an X- prefix as a convention.
The most common one, X-Requested-With: XMLHttpRequest, is used by most of the JavaScript frameworks such as
JQuery to identify the AJAX requests.

HTTP Methods
The HTTP methods denote the action that a client requests on a resource. Table 4-1 shows the eight methods defined
in the HTTP 1.1 specification.

Table 4-1.  HTTP Methods Comparison

Method Description Side Effect

GET Gets a representation of the resource Nullipotent; no side effect

PUT Updates a resource Yes, but idempotent

POST Creates a new resource or updates the resource Yes

DELETE Deletes a resource Yes, but idempotent

HEAD Same as GET but without response body Nullipotent; no side effect

OPTIONS Methods supported for the URI Nullipotent; no side effect

CONNECT Converts the request connection to a TCP tunnel, usually to facilitate
HTTPS through an HTTP proxy; there are security implications with
supporting this method

Nullipotent; no side effect

TRACE Gets the request back, as received by the server with all changes
introduced by intermediate servers; generally not recommended from a
security point of view

Nullipotent; no side effect

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ http anatomy and SeCurity

44

Currently, ASP.NET Web API supports all the methods except CONNECT and TRACE through convention.
By implementing a method with a name starting with the HTTP method in the ApiController subclass, you can let
the ASP.NET Web API framework route the HTTP requests to the corresponding method in the controller class.
For example, by implementing a method GetEmployee() or just Get() in EmployeesController, you can handle an
HTTP GET request.

For the CONNECT and TRACE methods, you must apply the AcceptVerbs attribute on the action method to get
the requests routed appropriately. Listing 4-1 shows how you can support TRACE by adding a specific action method
to the ApiController and applying the AcceptVerbs attribute on the action method.

Listing 4-1. TRACE Method

[AcceptVerbs("TRACE")]
public void Echo(){}

Note I if a request for an unsupported method comes in, aSp.net Web api responds with a response status code
of 405 – method not allowed.

Figure 4-4 shows what a typical request message looks like when we put all the pieces of the HTTP request
together. Because it is a GET, there is no message body.

Method Overriding
RESTful services allow the clients to act on the resources through methods such as GET, POST, PUT, DELETE,
and so on. GET and POST are the most frequently used methods.

Most of the corporate firewalls allow port 80, the typical port of HTTP. However, some do have restrictions in
terms of the HTTP methods allowed. GET and POST methods are very common, but others such as DELETE can
be disallowed.

The X-HTTP-Method-Override header can help you work around this problem. A typical solution involving
this header is to send X-HTTP-Method-Override in the request with the actual verb intended (DELETE or PUT) and
submit the request using POST; that is, the request line with the dummy POST verb tricks the firewall into allowing
the request.

In ASP.NET Web API, a message handler, such as the one shown in Listing 4-2, can replace POST with the method
specified in X-HTTP-Method-Override. The message handler runs early in the pipeline and is the best extensibility
point suitable for this purpose.

Request Line

Request Headers

GET /home.html HTTP/1.1

Accept: text/html
User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)
Host: server.com
[Blank line indicating the end of request headers]

Figure 4-4. Request message

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

45

Listing 4-2.  Method Override

public class MethodOverrideHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 if (request.Method == HttpMethod.Post && request.Headers.Contains("X-HTTP-Method-Override"))
 {
 var method = request.Headers.GetValues("X-HTTP-Method-Override").FirstOrDefault();
 
 bool isPut = String.Equals(method, "PUT", StringComparison.OrdinalIgnoreCase);
 bool isDelete = String.Equals(method, "DELETE", StringComparison.OrdinalIgnoreCase);
 
 if (isPut || isDelete)
 {
 request.Method = new HttpMethod(method);
 }
 }
 
 return await base.SendAsync(request, cancellationToken);
 }
}
 

To test the preceding MethodOverrideHandler, you will need a tool like Fiddler, covered in depth later in this
chapter. Fiddler is useful in capturing and analyzing HTTP traffic. Also, it lets you hand-code a request complete with
request headers and send it to an endpoint with an HTTP method of your choice. Figure 4-5 illustrates how you can
make a POST request with an X-HTTP-Method-Override header set to PUT. If MethodOverrideHandler is plugged
into the pipeline by making an entry in WebApiConfig.cs file under App_Start, this request will invoke the PUT action
method in the controller instead of POST.

HTTP Response
The HTTP response has the status line as the first line of the response. As shown in Figure 4-6, the status line starts
with the HTTP version, followed by a space, followed by the status code and a space, and then the reason phrase.
The request line is terminated by a CR and an LF character.

Figure 4-5.  Fiddler Composer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

46

Status Codes
The HTTP response status code is a three-digit number. The first digit defines the class of the response:
1—Informational, 2—Success, 3—Redirects, 4—Client-side error, and 5—Server-side error. Table 4-2 shows some
of the most common status codes. Sending the appropriate status code for the situation is an important aspect of
embracing HTTP. By doing so, you can leverage the broad acceptance of HTTP.

Space Space

Status
code

Reason
phrase

HTTP
Version

HTTP/1.1 200 OK
CRLF

Figure 4-6.  Status line

Table 4-2.  HTTP Status Codes

Status Code Description

200 OK The request has been successfully processed.

201 Created The request has been fulfilled and resulted in a new resource being created. The URI for
the new resource is returned in the Location response header. In ASP.NET Web API,
such a response can be created like this:

Request.CreateResponse<Employee>(HttpStatusCode.Created, employee);

204 No Content The request has been successfully processed, but no content is being returned. A void action
method in ASP.NET Web API returns this status code. Also, a delete action method can send
this code to denote the resource has been deleted.

400 Bad Request The request could not be understood by the server due to malformed syntax.

401 Unauthorized The request requires user authentication. If the credentials are already provided, a status code
of 401 indicates the provided credentials are invalid.

403 Forbidden The server understood the request, but is refusing to fulfill it. This status code can be used
even when valid credentials are provided; for example, if the user corresponding to the
submitted credential is not allowed to access the resource. Typically, the server sends back the
reason why it is refusing to fulfill the request along with this status code.

404 Not found The server has not found anything matching the request URI. The 404 status code can also be
used in 403 scenarios, when the server does not want to send back the reason why it is refusing
to serve the request. A good example is when the server senses some kind of an attack, which
might be a brute force attack. In this case, the server responds with a 404 Not found instead of
a 403 Forbidden and an explanation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

47

The Curious Case of an Unhandled Exception
When an exception is thrown and it is not handled, ASP.NET Web API returns a 500 Internal Server Error. Listing 4-3
shows an action method that throws an ArgumentException, but there is no handler to catch this exception.

Listing 4-3.  Unhandled Exception

public class EmployeesController : ApiController
{
 public IEnumerable<Employee> Get(string department)
 {
 if(!String.Equals(department, "HR", StringComparison.OrdinalIgnoreCase))
 throw new ArgumentException("Bad Department");
 
 return new List<Employee>()
 {
 new Employee() { Id = 12345, Name = "John Q Human" }
 };
 }
}
 

When a GET request is made for the department of “HR,” a response status code of 500 is returned. In this case,
the response body has the stack trace details.

{"Message":"An error has occurred.","ExceptionMessage":"Bad Department","ExceptionType":
"System.ArgumentException","StackTrace":" at ...

Sending a stack trace is a security risk. By specifying the Never option for the error details inclusion policy in
WebApiConfig.cs under the App_Start folder, the stack trace can be stopped from getting to the client.

config.IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never;

However, this is not useful from the client perspective. The client has the status code of 500, which basically
indicates something is wrong with the service. This is obvious and not useful in determining what is wrong. By throwing
an HttpResponseException, we can have better control of what is being sent to the client and can control the status
code and other things to be more meaningful, as shown in Listing 4-4.

Listing 4-4.  HttpResponseException

public Employee Get(int id)
{
 if (id > 999999)
 {
 throw new HttpResponseException
 (
 new HttpResponseMessage()
 {
 Content = new StringContent("Invalid employee id"),
 StatusCode = HttpStatusCode.BadRequest
 }
);
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

48

Instead of a generic status 500, 400 – Bad Request gets sent back along with the message stating the employee
is invalid.
 
HTTP/1.1 400 Bad Request
Headers go here
 
Invalid employee id
 

This gets the job done, but there is an extensibility point in the form of ExceptionFilterAttribute available to
map standard .NET exceptions to standard HTTP status code (see Listing 4-5). Such a filter added to the global filter
collection will keep the code dry from the point of view of having to build an HTTP response with different status
codes at different places.

Listing 4-5.  Exception Filter

public class ExceptionFilter : ExceptionFilterAttribute
{
 private IDictionary<Type, HttpStatusCode> map = null;
 
 public ExceptionFilter()
 {
 map = new Dictionary<Type, HttpStatusCode>();
 map.Add(typeof(ArgumentException), HttpStatusCode.BadRequest);
 map.Add(typeof(SecurityException), HttpStatusCode.Unauthorized);
 map.Add(typeof(NotImplementedException), HttpStatusCode.NotImplemented);
 }
 
 public override void OnException(HttpActionExecutedContext context)
 {
 if (!(context.Exception is HttpException))
 {
 context.Response = new HttpResponseMessage(map[context.Exception.GetType()])
 {
 Content = new StringContent(context.Exception.Message)
 };
 }
 }
}

Note■■   For those with an eye for details, I use 400 – Bad Request to denote the condition that a passed in ID is not a
valid one or a bad one. This can be handled well with a 404, which means there is no employee for the incoming ID.

Response Headers
The response headers enable the server to pass any additional information about the response that belongs neither
to the status line nor to the response body. For example, the Content-Type header has the MIME or media type of the
response content. As another example, the Date header, which HTTP/1.1 mandates the servers to send with every
response, contains the date and time the response was generated (in GMT).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

49

The response headers look exactly like the request headers shown in Figure 4-3, in that the header fields are
colon-separated key–value pairs terminated by a CRLF. The end of the header fields is indicated by an empty field: two
consecutive CRLF pairs.

One of the important response headers from the security standpoint is the WWW-Authenticate header. When a
request to ASP.NET Web API comes in with an invalid credential or if the required credential is missing, the standard
response status code is 401 – Unauthorized. In such a case, as per the HTTP specification, the WWW-Authenticate
header must be included in the response. This header denotes the authentication scheme supported by the web API.

Request for Comments (RFC) 2617 (HTTP Authentication: Basic and Digest Access Authentication) provides the
specification for the HTTP authentication framework, the original Basic Access Authentication scheme and a scheme
based on cryptographic hashes referred to as the Digest Access Authentication. The basic authentication scheme is
based on the model that requires the client to authenticate itself with a user ID and a password for each realm. For
example, a web API requiring basic authentication will send the following header if the authentication header is
absent in the request or if the credential specified is invalid.
 
WWW-Authenticate: Basic
 

In addition to the scheme information, the WWW-Authenticate header can contain additional information for
the client such as the realm.
 
WWW-Authenticate: Basic realm="GreenPlanet"
 

Like the basic access authentication, the digest access authentication verifies that both parties to a
communication know a shared secret (a password). Unlike basic authentication, this verification is done without
sending the password in the clear, which is the biggest weakness of basic authentication. The digest scheme uses a
nonce. A client does not send the password at all. Instead, it sends a digest or a hash (an MD5 hash to be specific) of
the username, the password, the given nonce, the HTTP method, and the requested URI. The nonce is generated by
the server and sent with the WWW-Authenticate header, as shown in the following example.
 
WWW-Authenticate: Digest realm="MagicalRealm", qop="auth", nonce="abcd98b7102ee2f0e9f26d0d600bfb0c562"
 

A web API can simultaneously support both the basic and the digest authentication schemes. In such a case, as
part of the 401 – Unauthorized response, two WWW-Authenticate headers will be sent to the client, as shown in the
following example.
 
WWW-Authenticate: Basic realm="MagicalRealm"
WWW-Authenticate: Digest realm="MagicalRealm", qop="auth", nonce="abcd98b7102fd600bfb0c562"
 

When a client receives these two headers, it can choose to use the scheme that best suits its capability. If a client
is capable of using both schemes, then digest authentication can be chosen because it is more secure. As an example,
if Internet Explorer has an option of both the basic and digest schemes, it automatically picks digest over basic. We
cover both the basic and digest authentication schemes in more detail in Chapter 8.

Response Body
The response body has the representation of the resource, as defined by the Content-Type header. For a web page,
this will be the HTML. For ASP.NET Web API, this could be JSON, XML, or whatever format represents the
response returned.

Putting all these pieces of the HTTP response together, the Figure 4-7 shows what a typical response message
looks like. Some of the headers have been removed for brevity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

50

Web Caching
A web cache is a cache of the web server responses—such as the web pages, the images, and the style sheets—for
later use. Web caching can reduce the round trips, the network bandwidth, and the web server resource utilization.
End users also perceive a better performance. The cache can be in a web browser, if one is involved, or any of the
intermediate servers such as the ISP or any proxy servers in between. Nothing gets cached if HTTPS is used.

Expiration and validation are the two primary mechanisms associated with caching. The expiration mechanism
allows a response to be reused without checking with the server, thereby reducing the round trip and the validation
mechanism minimizes the bandwidth usage.

What is cached need not always be a file such as an image or a Cascading Style Sheet (CSS). Even ASP.NET Web
API responses can be cached. An example for such a scenario is a web API returning any master list, such as a list
of codes that hardly change or even changes less frequently. By default, the ASP.NET Web API framework marks the
response to be not cached by setting the value of the Cache-Control header to no-cache.

The Cache-Control: max-age directive specifies the duration in seconds a cache can be used before it expires.
To look at this response header in action, go back to the ApiController – EmployeesController used in Chapter 2.
The GetAllEmployess method returns the employees list resource in the JSON representation, which is consumed
by an MVC view through JQuery Ajax. You can override the default behavior of the response getting marked to be not
cached by returning the cache-control response header with a specific value. In Listing 4-6, we use the max-age value
of six seconds. As you probably know, the six seconds expiry time is too low for any practical implementation; it is
used here only for illustration purposes.

Listing 4-6.  Cache-Control: max-age

public class EmployeesController : ApiController
{
 public HttpResponseMessage GetAllEmployees()
 {
 var employees = new Employee[]
 {
 new Employee()
 {
 Id = 12345,
 Name = "John Q Law",
 Department = "Enforcement"
 },

Status Line

Response Headers

Response Body

HTTP/1.1 200 OK
Date: Thu, 27 Sep 2012 09:00:19 GMT
Cache-Control: no-cache
Content-Type: application/json; charset=utf-8
Content-Length: 122

[{”Id”:12345,”Name”:”John Q Law”,”Department”:”Enforcement”],
{”Id”:45678,”Name”:”Jane Q Taxpayer”,”Department”:”Revenue”}]

Figure 4-7.  Response message

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

51

 new Employee()
 {
 Id = 45678,
 Name = "Jane Q Taxpayer",
 Department = "Revenue"
 }
 };
 
 var response = Request.CreateResponse<IEnumerable<Employee>>
 (HttpStatusCode.OK, employees);
 
 response.Headers.CacheControl = new CacheControlHeaderValue()
 {
 MaxAge = TimeSpan.FromSeconds(6),
 MustRevalidate = true,
 Private = true
 };
 
 return response;
 }
}
 

Listing 4-7 shows a /Home/Index view to call the web API shown in the preceding example. Against each of the
unordered list items, current date and time is provided to prove that JavaScript runs and updates the unordered list
items with each click of the button.

Listing 4-7.  Home/Index View

@section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#search').click(function () {
 $('#employees').empty();
 $.getJSON("/api/employees", function (data) {
 $.each(data, function (i, employee) {
 var now = new Date();
 var ts = now.getHours() + ':' + now.getMinutes() + ':' + now.getSeconds();
 
 var content = employee.Id + ' ' + employee.Name;
 content = content + ' ' + employee.Department + ' ' + ts;
 
 $('#employees').append($('', { text: content }));
 });
 });
 });
 });
 </script>
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

52

<div>
 <div>
 <h1>Employees Listing</h1>
 <input id="search" type="button" value="Get" />
 </div>
 <div>
 <ul id="employees" />
 </div>
</div>
 

When the Get button is clicked the first time, a request is made to the web API. For the next six seconds, which is
the expiration time chosen for the cache, regardless of the number of times you click the button, no request is made to
the web API; the data from the cache is used to rebuild the list.

Only the JSON representation is cached. JQuery runs and builds the unordered list each time the button is
clicked. As you can see, the date and time stamp against the items changes every time you click the button, which
is proof that the script is running for each click event. By using a tool like Fiddler, covered in more detail later in this
chapter, you can verify that JQuery builds the list out of the web cache rather than making a call to the web API.

Once the cache becomes stale (i.e., after six seconds) the client can check with the server if the cache is still valid
through the validation mechanism and get a new lease for another six seconds. We look at the ETag (entity tag) from
the validation perspective in the next section.

BALANCING SPEED AND SECURITY

Take the case of the corporate networks with multiple users behind a proxy server. Alice, a legitimate user,
issues a request to a web API on the Internet through the proxy server and gets the response back. If the web API
denotes in the header that the response can be cached, the proxy will cache the response.

What if Mallory, a malicious user who is behind the same proxy, replays Alice’s request? If Mallory’s request
makes it to the web API, the authentication message handler will fail the request, sensing replay. But will this
request be serviced by proxy through its cache? The answer is yes if the cache control denotes it is public.

By specifying private, we are “requesting” intermediaries such as proxies to not cache, allowing only the browser
of the end user to cache. It does not offer your data any protection because the intermediaries, both good and evil,
can still see the response. Any intermediary who is either not willing to play by the rules or is ignorant of the rules
can cache and do anything with the data in your web API response.

Before making a decision to cache your web API responses from a performance standpoint, review the security
implications. As a general rule, allow only data that is generic and not specific to a user and data that is not
sensitive to be cached public.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

53

Entity Tag
An entity tag (ETag) is a unique identifier assigned by the web server to identify a specific version of a resource
representation. If the representation changes at any time, a new ETag is assigned.

As shown in Figure 4-8, the server sends the ETag header along with the response. The client caches the response
and the ETag. Subsequently, when the client makes a request for the same resource, the server will send the previously
saved ETag in the If-None-Match request header.

Client
Server

www.server.com

GET /home.html HTTP/1.1

HTTP/1.1 200 OK
Etag: “abcdef”

GET /home.html HTTP/1.1
If-None-Match: “abcdef”

HTTP/1.1 304 Not Modified

Figure 4-8.  ETag

If the resource has not changed in the server, the server can simply respond with a status code of 304 – Not
modified without sending the full response back. When the resource representation has changed, the server sends the
new representation with the new ETag corresponding to the changed representation.

The basic idea behind sending the 304 – Not modified status is to save network bandwidth. If the response has
not changed, there is no need to resend the entire response back. The server can simply return the status code and tell
the client that what you got last time is still valid. The important thing here is that the response must be cached at the
client side for this to work. Although it is possible to use the ETag without web caching (as in the case of implementing
the optimistic concurrency that you will see next), the ETags and web caching go hand in hand.

With caching in the mix, the sequence is just the same as in the preceding, for the most part. When the ETag is sent
in the 200 – OK response, the Cache-Control header also gets sent back. Assume the max age of six seconds, just as in
the earlier example. That is, for the next six seconds until the time the cache expires, the browser does not send any
request to the server. After the six-second period, post the cache expiry, the browser sends a request that contains the
If-None-Match request header. If the resource representation has not changed, the server responds with a 304 status
code. For the next six seconds, the browser will work off the cache and does not issue any more requests to the server.

Implementing ETag in ASP.NET Web API
The ETag capabilities can be added to a web API through an ActionFilter, as shown in Listing 4-8. I’m opting for
an ActionFilter for the following two reasons.

1.	 ActionFilter makes sure the ETag-related code runs as close as possible to the actual
action method. Assuming that authentication and authorization are implemented in the
message handlers, the security-related code will have already run by the time execution
comes to the filter and unauthorized requests will have failed earlier in the pipeline.

2.	 ActionFilter gives us the ability to specify the inclusion of the ETag in the response for
specific action methods. Typically, you don’t want to be caching everything. Data that
hardly changes or that changes less frequently, such as the master list of codes, are good
candidates. However, not every single action method of your web API can be cached.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ http anatomy and SeCurity

54

Listing 4-8. ETag Action Filter

public class EnableETag : ActionFilterAttribute
{
 private static ConcurrentDictionary<string, EntityTagHeaderValue> etags = new
 ConcurrentDictionary<string, EntityTagHeaderValue>();

 public override void OnActionExecuting(HttpActionContext context)
 {
 var request = context.Request;

 if (request.Method == HttpMethod.Get)
 {
 var key = GetKey(request);

 ICollection<EntityTagHeaderValue> etagsFromClient = request.Headers.IfNoneMatch;

 if (etagsFromClient.Count > 0)
 {
 EntityTagHeaderValue etag = null;
 if (etags.TryGetValue(key, out etag) && etagsFromClient.Any(t => t.Tag == etag.Tag))
 {
 context.Response = new HttpResponseMessage(HttpStatusCode.NotModified);
 SetCacheControl(context.Response);
 }
 }
 }
 }

 public override void OnActionExecuted(HttpActionExecutedContext context)
 {
 var request = context.Request;
 var key = GetKey(request);

 EntityTagHeaderValue etag;

 if (!etags.TryGetValue(key, out etag) || request.Method == HttpMethod.Put ||
 request.Method == HttpMethod.Post)

 {
 etag = new EntityTagHeaderValue("\"" + Guid.NewGuid().ToString() + "\"");
 etags.AddOrUpdate(key, etag, (k, val) => etag);
 }

 context.Response.Headers.ETag = etag;
 SetCacheControl(context.Response);
 }

 private string GetKey(HttpRequestMessage request)
 {
 return request.RequestUri.ToString();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

55

 private void SetCacheControl(HttpResponseMessage response)
 {
 response.Headers.CacheControl = new CacheControlHeaderValue()
 {
 MaxAge = TimeSpan.FromSeconds(6),
 MustRevalidate = true,
 Private = true
 };
 }
}

ETag ActionFilter
The ETag ActionFilter needs to keep track of the ETags it generates to validate the same if the client sends an ETag
back in the request. For this purpose, I’m using ConcurrentDictionary. The key is the URI and the value is the
ETag sent with the response. For example, if you make a GET for http://server.com/api/employees/12345, the web
API sends back an ETag that says 123456789 in the response, after making an entry in the dictionary with the key as
http://server.com/api/employees/12345 and 123456789 as the value. The value is EntityTagHeaderValue,
but I’m simply making an approximation here for the sake of brevity.

There are two major components of the ActionFilter: the OnActionExecuted and OnActionExecuting methods.

1.	 OnActionExecuted runs after the action method. If the HTTP method is a PUT or a POST,
a new ETag is generated. I’m using a GUID as an ETag here. The generated ETag gets
stored in the dictionary and gets sent in the ETag response header. The dictionary storage
operation is an AddOrUpdate. The old tag gets updated and the new tag just gets inserted.

2.	 OnActionExecuting runs before the action method. It looks for an ETag in the If-None-
Match request header. If the ETag value passed by the client in this header matches the
one stored in the dictionary against the request URI, a 304 – Not modified status code is
returned and the action method execution is short-circuited.

The ETag ActionFilter is based on the assumption that all the updates and the inserts go through the web API
so that OnActionExecuted adjusts the ETag correctly. If the entity is stored in a database and someone directly updates
the database, the web API will not know that the underlying data has changed. In that case, it is better to base the ETag
off the version or timestamp associated with the database record. The web API must get the version from the database
and compare it with the version corresponding to the ETag.

If you ask the web API for a JSON response and make a subsequent request with the ETag you got in the previous
JSON response in the If-None-Match header, but you smartly ask for an XML representation the second time through
Accept header, the web API will still send you a 304 and not an XML response!

Testing ETag ActionFilter
To test the preceding filter, you can apply it on the Get(int id) action method, as shown in Listing 4-9. Also, you can
modify the Home/Index view to include another button and JavaScript to call this method (see Listing 4-10).

www.it-ebooks.info

http://server.com/api/employees/12345
http://server.com/api/employees/12345
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

56

Listing 4-9.  ETag Filter in Action

[EnableETag]
public Employee Get(int id)
{
 return new Employee()
 {
 Id = id, Name = "John Q Human", Department = "Enforcement"
 };
}

Listing 4-10.  Home/Index View Changes to Call Get Method

@section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#search').click(function () {
 // Removed for brevity
 });
 
 $('#details').click(function () {
 $('#employee').empty();
 $.getJSON("/api/employees/12345", function (employee) {
 var now = new Date();
 var ts = now.getHours() + ':' + now.getMinutes() + ':' + now.getSeconds();
 
 var content = employee.Id + ' ' + employee.Name;
 content = content + ' ' + employee.Department + ' ' + ts;
 
 $('#employee').append($('', { text: content }));
 });
 });
 });
 </script>
}
<div>
 <div>
 <h1>Employees Listing</h1>
 <input id="search" type="button" value="Get" />
 <input id="details" type="button" value="Details" />
 </div>
 <div>
 <ul id="employees" />
 </div>
 <div>
 <ul id="employee" />
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

57

ETags for Managing Concurrency
ETags can also be used for managing concurrency in an optimistic fashion, without combining with web caching.
Concurrency management is essential to ensure data integrity in the case of multiuser environments such as the web.
Because HTTP is stateless, locking a resource before the update is not a feasible option. The optimistic approach
ensures that there will be no intermediate changes between the time of read and the subsequent update. The update
will fail if there is an intermediate change. This is the best approach for the stateless HTTP services. As part of a GET
response, the web API sends an ETag. Subsequent to this, if the same resource has to be updated through a PUT, the
client sends the same ETag in the If-Match request header. Figure 4-9 shows this process.

GET api/ employees/12345

HTTP/1.1 200 OK
Etag: “abcdef”

PUT api/ employees/12345
If-Match: “abcdef”

HTTP/1.1 409 Conflict
Client

Server
www.server.com

If some other user has updated the
same resource between the time of
GET and the subsequent PUT

Figure 4-9.  ETag for managing concurrency

If the ETag sent by the client matches the ETag in the persistence store, such as the database or a concurrent
dictionary, the store is updated with the new value. If there is a mismatch, a status code of 409 – Conflict gets sent back
to the client. The client can follow this with a fresh GET and retry the update. Listing 4-11 shows the code for an action
filter that is very similar to the EnableETag filter in the preceding section.

Listing 4-11.  ETag for Managing Concurrency

public class ConcurrencyChecker : ActionFilterAttribute
{
 private static ConcurrentDictionary<string, EntityTagHeaderValue> etags = new
 ConcurrentDictionary<string, EntityTagHeaderValue>();
 
 public override void OnActionExecuting(HttpActionContext context)
 {
 var request = context.Request;
 
 if (request.Method == HttpMethod.Put)
 {
 var key = request.RequestUri.ToString();
 
 EntityTagHeaderValue etagFromClient = request.Headers.IfMatch.FirstOrDefault();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

58

 if (etagFromClient != null)
 {
 EntityTagHeaderValue etag = null;
 if (etags.TryGetValue(key, out etag) && !etag.Equals(etagFromClient))
 {
 context.Response = new HttpResponseMessage(HttpStatusCode.Conflict);
 }
 }
 }
 }
 
 public override void OnActionExecuted(HttpActionExecutedContext context)
 {
 var request = context.Request;
 var key = request.RequestUri.ToString();
 
 EntityTagHeaderValue etag;
 
 if (!etags.TryGetValue(key, out etag) || request.Method == HttpMethod.Put ||

 request.Method == HttpMethod.Post)
 {
 etag = new EntityTagHeaderValue("\"" + Guid.NewGuid().ToString() + "\"");
 etags.AddOrUpdate(key, etag, (k, val) => etag);
 }
 
 context.Response.Headers.ETag = etag;
 }
}
 

To test this filter, follow these steps.

1.	 Add the action method public void Put(Employee employee) {} to
EmployeesController.

2.	 Apply the ConcurrencyChecker filter on this Put() method.

3.	 Click the Details button of the /Home/Index view to issue a GET and obtain the ETag.

4.	 Use the same ETag in the If-Match header and issue a PUT request from Fiddler. If PUT is
successful, the web API returns 204 – No content because we have left Put() empty.

5.	 Replay the same PUT request and you will get a 409 – Conflict.

Caution■■   EnableETag filter in Listing 4-8 and ConcurrencyChecker in Listing 4-11 use a concurrent dictionary, which
is at the App domain level, to store the ETags. In a real production situation, especially when it involves a web garden
or a web farm deployment, the tags must be retrieved from the database or some other place common to all servers.
Otherwise, the dictionaries in the different app domains will not be in sync to implement this ETag or concurrency check
in a meaningful way.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

59

Tip■■  I f you try this example in Cassini, the web server that ships with Microsoft Visual Studio 2010, the ETag header
does not get written on to the response. The previous filter works because we are also writing the cache-control, which is
absent in this filter. For that reason, Cassini is suppressing the ETag header. IIS Express or IIS must be used to run
this example.

Cross-Origin Resource Sharing
Cross-Origin Resource Sharing (CORS) is a specification that defines the ways for a web server (read ASP.NET Web
API) to allow its resources to be accessed by the script running in a web page from a different domain. The server and
the client work together, using HTTP headers to make accessing cross-origin resource possible.

The same origin policy, an important security concept relevant to the browser-side scripting languages such as
JavaScript, restricts the scripts from accessing resources from a different origin. An origin is defined by the scheme,
host, and port of a URL. For example, a web page from server.com cannot run a JavaScript and access a page from
anotherserver.com. This policy has a direct impact on scenarios that involve the web pages accessing a shared or
public ASP.NET Web API on the Internet.

In Chapter 2, we looked at an ASP.NET MVC view accessing a web API hosted in the same server. In Visual
Studio, if I separate out the web API piece into an individual application running in a port different from the port
where the MVC application runs, JQuery AJAX would stop working. There are a few workarounds for this problem.
One workaround is CORS. Of course, CORS is not the only solution for cross-origin resource access. There are other
mechanisms such as JSONP, proxying, and message passing via IFRAME, but CORS is a modern and better alternative.
For example, JSONP supports only GET methods.

One key consideration if you choose CORS is the possible lack of support for CORS in older browsers.
CORS is supported by the following browsers: Firefox 3.5+, Internet Explorer 10+, Google Chrome 4.0+, Safari 4.0+,
Opera 12.0+, and Opera Mobile 12.0+ (Source: http://caniuse.com/cors).

Simple CORS
For a nullipotent method like GET, the client sends the Origin request header with the origin value. The web API
checks to see if that origin can be allowed access to a resource. With the response, the web API returns the
Access-Control-Allow-Origin header with the same value sent by the client or *, if this resource is available to all with
no restriction. If the web API sends the response but does not send the header or the origin sent does not match the
origin received, the client-side browser drops the response and does not proceed.

To understand CORS, you need to first understand how browsers enforce the same origin policy. The following
steps illustrate the same origin policy at work.

1.	 Configure the earlier project, ‘TalentManager,’ that we worked on in Chapter 2 to use
Visual Studio Development Server and run on a specific port 5214. Go to the project
properties ‘Web’ tab, and specify the port as shown in Figure 4-10.

www.it-ebooks.info

http://caniuse.com/cors
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

60

2.	 Create a new Web API project. Here we create it with the name ‘Cors’ and configure it to
use Visual Studio Development Server and run on port 6504. Accessing the web API in
Cors from a web page in TalentManager is a cross-origin request. That is what you are
trying to test.

3.	 Take the MVC view from Listing 4-10 and change the URL of the getJSON(), making
the GET request of a specific employee to an absolute path of
http://localhost:6504/api/employees/12345, as shown in Listing 4-12.

Listing 4-12.  CORS GET – MVC View

@section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#search').click(function () {
 // Removed for brevity
 });
 
 $('#details').click(function () {
 $('#employee').empty();
 $.getJSO�N("http://localhost:6504/api/employees/12345", function (employee) {
 var now = new Date();
 var ts = now.getHours() + ':' + now.getMinutes() + ':' +

now.getSeconds();
 
 var content = employee.Id + ' ' + employee.Name;
 content = content + ' ' + employee.Department + ' ' + ts;
 

Figure 4-10.  Specifying a port for Visual Studio Development Server

www.it-ebooks.info

http://localhost:6504/api/employees/12345
http://localhost:6504/api/employees/12345
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

61

 $('#employee').append($('', { text: content }));
 });
 });
 });
 </script>
}
<div>
 <div>
 <h1>Employees Listing</h1>
 <input id="search" type="button" value="Get" />
 <input id="details" type="button" value="Details" />
 </div>
 <div>
 <ul id="employees" />
 </div>
 <div>
 <ul id="employee" />
 </div>
</div>
 

4.	 Add a new ApiController with the name EmployeesController to the ‘Cors’ project
and implement the Get(int id) action method, exactly the same as ‘TalentManager’
for the view in Listing 4-12 to use. With this change, the Home/Index view of the project
‘TalentManager’ running on port 5214 will try to consume the web API running on port
6504 of the same localhost.

5.	 Run ‘TalentManager’ in Internet Explorer and in the /Home/Index page click the Details
button. The button click appears to have no effect and nothing gets displayed in the
unordered list. That is, Internet Explorer enforces the same origin policy.

6.	 If you want to be sure that the same origin policy enforcement by Internet Explorer is the
real reason for the employees list not displaying, you can roll back the URL change so that
the URL for getJSON is /api/employees/12345. The web API is in the same project and
hence the same port gets exercised. It thus should begin to work this time, after the URL
change rollback.

7.	 Finally, instead of using Internet Explorer, use the Mozilla Firefox browser. Go to
http://localhost:5214 and click the Details button. Firefox does not budge either.
No browser allows cross-origin requests to work by default, for security reasons.

To get this working, change the Get(int) action method as shown in Listing 4-13.

Listing 4-13.  CORS GET – Web API

public class EmployeesController : ApiController
{
 public HttpResponseMessage Get(int id)
 {
 var employee = new Employee()
 {
 Id = id,
 Name = "John Q Human",
 Department = "Enforcement"
 };
 

www.it-ebooks.info

http://localhost:5214/
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

62

 var response = Request.CreateResponse<Employee>(HttpStatusCode.OK, employee);
 response.Headers.Add("Access-Control-Allow-Origin", "*");
 
 return response;
 }
}
 

With this change, rebuild the ‘Cors’ project and give it a try one more time, with Firefox (not Internet Explorer).
It works this time! This is CORS in action.

The response header Access-Control-Allow-Origin with value of * is the secret sauce that gets the cross-origin
request working. Of course, in Listing 4-13 the response header is blindly sent back with a *. However, it is typical to
inspect the Origin header, which is available through Request.Headers.GetValues("Origin").FirstOrDefault(),
and decide to allow the request or not. In the preceding example, the Origin header has a value of
http://localhost:5214 from where the request originates.

Note■■   Validating the Origin header in the request and setting the Access-Control-Allow-Origin header in the response
can be moved to an action filter. Only those GET methods that are potential candidates for CORS can be decorated with
the filter attribute.

CORS SUPPORT IN THINKTECTURE.IDENTITYMODEL

In the preceding examples, I returned * in the Access-Control-Allow-Origin response header, which means that
the resource can be accessed by any domain. However, it is typical to inspect several parameters including the
Origin header and decide to allow the request or not.

Thinktecture.IdentityModel, for example supports a rich configuration API to control the access in a more
granular way: the resources you want to allow access; which origins, HTTP methods, and request or response
headers are allowed; and if cookies are allowed.

// Allow all CORS requests to the Employees controller from the http://foo.com origin.
corsConfig.ForResources("Employees")
 .ForOrigins("http://foo.com")
 .AllowAll();

// Allow http://foo.com to use any method, pass cookies, send the request headers
// of Content-Type, Foo and Authorization and read the Foo response header for
// the Employees and Products controllers
corsConfig
 .ForResources("Employees", "Products")
 .ForOrigins("http://foo.com")
 .AllowAllMethods()
 .AllowCookies()
 .AllowRequestHeaders("Content-Type", "Foo", "Authorization")
 .AllowResponseHeaders("Foo");

The CORS implementation of Thinktecture.IdentityModel will be part of the System.Web.Cors namespace in
ASP.NET Web API. (http://aspnetwebstack.codeplex.com/SourceControl/changeset/4284ca5270b9).

www.it-ebooks.info

http://localhost:5214/
http://aspnetwebstack.codeplex.com/SourceControl/changeset/4284ca5270b9
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

63

Preflighted Request
Next, we see how CORS works with a method with a side effect such as PUT. It gets slightly complicated with the
browser making an additional request, called a preflight request. This special request uses the HTTP OPTIONS
method and sends two headers.

1.	 The Origin request header (same as the Simple CORS involving GET).

2.	 The Access-Control-Request-Method header with the method that the client wants to
use, in this case a PUT.

The OPTIONS method response has two headers.

1.	 The Access-Control-Allow-Methods header has the comma-separated value of methods
supported by the server.

2.	 The Access-Control-Allow-Origin header, with a value same as origin or a *.

Based on the preflight response, the browser goes ahead with the actual PUT request. Of course, the PUT action
method has to return the Access-Control-Allow-Origin header for the script running in the browser to display any
data returned by the PUT action method. The following sequence shows the HTTP transactions with the headers.

1.	 The client sends the preflight request, the JQuery explicit PUT request, which gets
translated to an implicit OPTIONS issued by Firefox.
 
OPTIONS http://localhost:6504/api/employees HTTP/1.1
Access-Control-Request-Method: PUT
Origin: http://localhost:5214
 

2.	 The web API responds to the OPTIONS request with the appropriate headers. There is no
response body.
 
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: PUT
 

3.	 Because the web API allows PUT, as indicated by the Access-Control-Allow-Methods
response header in the OPTIONS response, the Firefox browser sends a PUT request to
the web API.
 
PUT http://localhost:6504/api/employees HTTP/1.1
Origin: http://localhost:5214
 

4.	 The web API responds to PUT.
 
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *

www.it-ebooks.info

http://localhost:6504/api/employees
http://localhost:5214/
http://localhost:6504/api/employees
http://localhost:5214/
http://www.it-ebooks.info/

Chapter 4 ■ http anatomy and SeCurity

64

Implementing Preflighted CORS in ASP.NET Web API
Following are the steps to implement the preflighted CORS in ASP.NET Web API.

1. Add a new action method to the HomeController in the ‘TalentManager’ project.

public ActionResult Preflight()
{
 return View();
}

2. Right-click the action method created in the previous step and add a view. Copy and paste
the code in Listing 4-14.

Listing 4-15 shows the web API code with the action methods to handle the PUT and the OPTIONS
requests.

Listing 4-14. CORS Preflight – JQuery

@section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#details').click(function () {
 $('#employee').empty();

 $.ajax({
 type: "PUT",
 url: "http://localhost.:6504/api/employees/12345",
 data: { "Name": "John Q Law", "Department": "Legal" },
 success: function (data) {
 $('#employee').append($('', { text: data }));
 },
 error: function (error) {
 console.log("ERROR:", error);
 }
 });
 });
 });
 </script>
}
<div>
 <div>
 <input id="details" type="button" value="Details" />
 </div>
 <div>
 <ul id="employee" />
 </div>
</div>

Note  Because CorS is related to the client side or the browser, you can open a local htmL file from your file system
in Firefox and test this out. the mVC application is not mandatory. however, the origin header will be null or absent in
the optionS request message in that case.

www.it-ebooks.info

http://localhost.:6504/api/employees/12345
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

65

Listing 4-15.  CORS Preflight – Web API

public HttpResponseMessage Put(Employee employee)
{
 // Update logic goes here
 
 var response = Request.CreateResponse<Employee>(HttpStatusCode.OK, employee);
 response.Headers.Add("Access-Control-Allow-Origin", "*");
 return response;
}
 
public HttpResponseMessage Options()
{
 var response = new HttpResponseMessage();
 response.StatusCode = HttpStatusCode.OK;
 response.Headers.Add("Access-Control-Allow-Origin", "*");
 response.Headers.Add("Access-Control-Allow-Methods", "PUT");
 return response;
}
 

3.	 With these changes in place, go to the http://localhost.:5214/Home/preflight URL in
Firefox. Click the Details button.

4.	 The JSON response returned by the Put(Employee) action gets displayed in the unordered
list. This is CORS preflight in action. Firefox issues an OPTIONS request, the preflight
request followed by the actual PUT request behind the scenes. You can verify this using the
Fiddler tool or the Firefox Web Console, which is available under the Web Developer menu.

The preceding code example showed you the code to add the headers inside the action methods, just to keep the
code simple and hence easier to understand. Just as the CORS GET, a filter can be created to support request header
checking and the response header addition. However, the Option method cannot be handled through a filter. Earlier
in the pipeline, if the action method is not available to handle HTTP OPTIONS, a 405 – Method Not Allowed is sent
back to the client.

The best bet is to use a message handler, similar to the one in Listing 4-16. One thing to keep in mind while
designing a message handler for CORS preflight is that the message handlers run for all the requests (or at least all
the requests in the route), unlike the filters, which run only for the action methods to which the filter is applied.
The response headers are hard-coded in the following example, but in the real world they have to be based on the
requirements at hand. Some configuration-based data along with ApiExplorer can be used to create the handler
generically to handle the OPTIONS method for the multiple controllers. If the message handler does not fit the bill,
only those controllers needing to support CORS can individually implement the action method to handle OPTIONS.

Listing 4-16.  CORS Preflight Delegating Handler

public class CorsPreflightHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,

 CancellationToken cancellationToken)
 {
 if (request.Headers.Contains("Origin") && request.Method == HttpMethod.Options)
 {
 var response = new HttpResponseMessage(HttpStatusCode.OK);
 
 response.Headers.Add("Access-Control-Allow-Origin", "*");
 response.Headers.Add("Access-Control-Allow-Methods", "PUT");
 

www.it-ebooks.info

http://localhost.:5214/Home/preflight
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

66

INTERNET EXPLORER

 return response;
 }
 
 return await base.SendAsync(request, cancellationToken);
 }
}

The CORS-related examples we have seen so far will not work with Internet Explorer 9 or earlier versions. For the
cross-origin requests, you must use the XDomainRequest object that was introduced with Internet Explorer 8.
XMLHttpRequest in Internet Explorer does not support CORS and hence JQuery AJAX will not work with Internet
Explorer. With Internet Explorer 10, this situation is likely to change and JQuery $.ajax should work, too. However,
using XDomainRequest is very simple, as shown in the following HTML/JavaScript code. Our modified version of the
action method Get(int id) returning the Access-Control-Allow-Origin header in the response is all it needs to
work.
 
<!DOCTYPE html>
<html>
 <head>
 <title>XDR</title>
 <script type="text/javascript">
 var xdr = new XDomainRequest();
 xdr.open("get", "http://localhost:6504/api/employees/12345");
 xdr.onload=function()
 {
 alert(xdr.responseText);
 }
 
 xdr.send();
 </script>
 </head>
<body>
</body>
</html>
 
XDomainRequest supports only POST and GET. The concept of preflighting requests does not exist with Internet
Explorer. Also, the MVC view that we have been using with Firefox can work equally well even if the HTML
generated, along with JavaScript, is saved as a local HTML file. But XDR is strict about the URL prefix being the
same. Hence, from a local HTML file, AJAX requests will not work.

HTTP Cookies
HTTP is stateless, but the HTTP specification does include a state management mechanism that uses the headers
to transport data back and forth between the server and the client with a user agent (read browser). The user agent
performs this action seamlessly, giving a stateful feeling to the whole stateless model. The underpinning of this
mechanism is a cookie.

www.it-ebooks.info

http://localhost:6504/api/employees/12345
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

67

A cookie is data in the form of the key–value pairs sent by a web server to the client in the Set-Cookie response
header. The client that supports the cookie mechanism starts sending this data back in the Cookie request header in
every single request made from the same user agent from that point onward, until the time the cookie expires. The
expiry of a cookie is determined by the server when it creates the cookie.

To set a cookie, the server sends the Set-Cookie header in the response, similar to this:
Set-Cookie: sesstoken=token=12345&token-type=general; expires=Wed, 26 Sep 2012 15:35:17 GMT

To send the cookie back, the client sends the Cookie header in the request, similar to this:
Cookie: sesstoken=token=12345&token-type=general

Cookies and ASP.NET Web API
A cookie is more relevant to a web application with the pages that a user navigates using a user agent such as a
browser. If the server returns a cookie as part of the response to the first request, the user agent keeps sending
the same data to the server until the time at which the cookie expires. There is nothing that needs to be done
programmatically in the web pages in the client side, because the cookie implementation is standardized by the
HTTP specification and the browser knows how to deal with the cookies.

On the other hand, ASP.NET Web API powered RESTful services are not navigated using a user agent and there is
not lot of value in terms of implementing cookie support, although it is possible to do so. If a web API is hosted on the
same domain as the web pages and the web pages hit the web API through AJAX, the web page cookie containing
the authentication ticket, as in the case of the Forms Authentication, can be shared with the web API. In other words,
the web API can piggyback on the session or authentication mechanism of the web application.

This is a marginal benefit and the risk is far more significant, irrespective of the cookie being an in-memory
cookie that expires when the browser is closed or a persistent cookie that gets stored in the disk of the end user’s
computer. The persistent cookies continue to remain alive until the time of expiry, even if the browser window is
closed. Compared to this, a normal HTTP header never outlives a transaction. A cookie, in memory or otherwise, that
is used to store sensitive information such as a session makes an application susceptible to Cross-Site Request Forgery
(CSRF), which is covered in depth in Chapter 15. Additionally, the cookies are generally frowned on in the REST
style architecture.

In both cases of the plain HTTP header and the cookie, if the unencrypted text is sent, it will be visible to the
malicious users with the ability to sniff the traffic. If a cookie must be used for a reason, data sent in the cookie must
be encrypted and the expiry limit set judiciously so that the chance of misuse is minimized.

The web API design should take into account the fact that cookie data can be tampered with and that cookies can
be deleted altogether. Thus, the cookie data must not be trusted. There must be a fallback mechanism in case a cookie
goes missing.

Listing 4-17 shows how to set and get a cookie from a message handler in ASP.NET Web API.

Listing 4-17.  Setting and Getting a Cookie

public class CookiesHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,

 CancellationToken cancellationToken)
 {
 // Getting a cookie
 CookieHeaderValue cookie = request.Headers.GetCookies("sesstoken").FirstOrDefault();
 if (cookie != null)
 {
 CookieState cookieState = cookie["sesstoken"];
 
 string token = cookieState["token"];
 string tokenType = cookieState["token-type"];
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

68

 var response = await base.SendAsync(request, cancellationToken);
 
 // Setting a cookie
 var pairs = new NameValueCollection();
 pairs["token"] = "12345";
 pairs["token-type"] = "general";
 
 response.Headers.AddCookies(new CookieHeaderValue[]
 {
 new CookieHeaderValue("sesstoken", pairs)
 {
 Expires = DateTimeOffset.Now.AddSeconds(30),
 Path = "/"
 }
 });
 
 return response;
 }
}

HttpOnly Cookies
A cookie that is created by ASP.NET Web API can be read by JavaScript running in the browser. If a cookie contains
critical security information, it becomes an important threat to deal with. HttpOnly cookies are transmitted by a
browser only with HTTP and HTTPS requests that restrict access from JavaScript, thereby mitigating the threat of
cookie theft via cross-site scripting (XSS).

To understand the security risk of JavaScript accessing a cookie, let’s create an MVC controller
CookieReaderController with an action method of Read(). We’ll create the view for Read(), as shown in Listing 4-18.

Listing 4-18.  JavaScript Accessing Cookie

@section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#details').click(function () {
 $('#employee').empty();
 
 $.ajax({
 type: "GET",
 url: "/api/employees/12345",
 success: function (response) {
 alert(document.cookie);
 $('#employee').append($('', { text: response.Id + ' ' + response.Name }));
 }
 });
 });
 });
 </script>
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

69

NONBROWSER CLIENT

<div>
 <div>
 <input id="details" type="button" value="Details" />
 </div>
 <div>
 <ul id="employee" />
 </div>
</div>
 

Click the Details button and you see an alert box with the cookie details. Thus, JavaScript from the MVC view
page is able to access the cookie created by the web API. Of course, when you create the cookie in the preceding code
listing, a path of “/” is specified, which opens up the cookie for both web API and MVC applications. The point I’m
trying to illustrate, though, is that the doors are open for possible cookie theft through XSS.

If the web application that is consuming the web API has an XSS hole, the same hole can be used by a malicious
user to inject some script that opens up a pop-up with an external URL passing document.cookie as the query string.
Seamlessly posting the cookie to some other origin will not be possible because of same origin policy restrictions,
though.

To mitigate this problem, set the HttpOnly property to true when creating the cookie. In this case,
document.cookie will not be able to read the cookie created by the web API. However, the best approach is to
avoid cookies altogether unless there is a really strong need.

Cookies are not limited only to web browsers. Any HTTP-aware client that supports cookies can deal with a
cookie sending ASP.NET Web API. The following code example shows a class extended from WebClient. It
overrides the virtual method GetWebRequest to attach an instance of CookieContainer to the request. The
CookieContainer object instance has to be reused across the requests to let it push cookies in the subsequent
requests. For this reason, it is a class-level field and the same instance of the web client is used to send multiple
requests. Here we use a proxy of address localhost and port 8888, that of Fiddler, to inspect requests and
responses.
 
public class CookieWebClient : WebClient
{
 private CookieContainer jar = new CookieContainer();
 
 protected override WebRequest GetWebRequest(Uri address)
 {
 WebRequest request = base.GetWebRequest(address);
  
 HttpWebRequest webRequest = request as HttpWebRequest;
 if (webRequest != null)
 webRequest.CookieContainer = jar;
  
 return request;
 }
}
 
string url = "http://localhost:7077/api/employees/12345";
 

www.it-ebooks.info

http://localhost:7077/api/employees/12345
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

70

CookieWebClient client = new CookieWebClient()
{
 Proxy = new WebProxy("localhost", 8888) // Fiddler
};
  
Console.WriteLine(client.DownloadString(url)); // Cookie is created here
Console.WriteLine(client.DownloadString(url)); // �In this request, the cookie gets sent back

to the web API

Proxy Server
Typical corporate networks include a web proxy server through which all Internet traffic is directed. When a user
inside the network makes a request for a resource on a web server hosted on the Internet, the request first goes to the
proxy server. The proxy makes the request to the web server on behalf of the user, gets the response back, and returns
the same to the user who initiated the request.

The web server will see only the IP address of the proxy and not the IP address of the individual users behind the
proxy. The proxy server can cache responses and use the same to service the subsequent requests.

The proxy servers typically require a user to be authenticated to enforce corporate policies on Internet usage.
In such a scenario, when a request with missing or invalid credentials is received by the proxy server it sends back a
407 – Proxy Authorization Required status code and starts a process, as shown in the following sequence of steps.

1.	 Client sends the initial request.
 
GET /Protocols/rfc2616/rfc2616.html HTTP/1.1
Host: www.w3.org
 

2.	 Proxy responds with a 407 status code.
 
HTTP/1.1 407 Proxy Authorization Required
Date: Thu, 27 Sep 2012 08:05:47 GMT
Proxy-Authenticate: NTLM
Proxy-Authenticate: Basic realm="Magical"
Content-Length: 322
Proxy-Support: Session-Based-Authentication
 

3.	 Client sends the credentials.
 
GET /Protocols/rfc2616/rfc2616.html HTTP/1.1
Host: www.w3.org
Proxy-Authorization: NTLM TlRMTVNTUAABAAAAB7IIogACbd0xU2MTg5Q1RT
 

4.	 Proxy sends the NTLM challenge.
 
HTTP/1.1 407 Proxy Authorization Required
Date: Thu, 27 Sep 2012 08:05:47 GMT
Proxy-Authenticate: NTLM TlRMTVNTUAACAAAFggAAUsIPcwnFBiwAAAAA==
Content-Length: 322
Proxy-Support: Session-Based-Authentication
 

www.it-ebooks.info

http://www.w3.org/
http://www.w3.org/
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

71

5.	 Client sends the challenge response.
 
GET /Protocols/rfc2616/rfc2616.html HTTP/1.1
Proxy-Authorization: NTLM TlRMTVNTUhWRXsX+BwCt918SLJSdOzv8KAuloqVcQhWRXsX+BwCt918Q=
Host: www.w3.org
 

6.	 Finally, the response is sent.
 
HTTP/1.1 200 OK
Date: Thu, 27 Sep 2012 08:05:47 GMT
 

If a browser is used, it seamlessly performs the preceding steps and gets back the response. If a nonbrowser client
is used, the 407 status needs to be handled. This generally occurs in the case of accessing a web API hosted on the
Internet from behind the proxy.

The .NET Framework has the classes to handle this case quite easily. Listing 4-19 shows how to use the
WebClient class to communicate to a web API through a proxy server. DefaultCredentials uses the account
running the code as the account to authenticate against proxy. This means if you run this as a console application,
the account under which you have logged into Windows is used. If this is run in an ASP.NET application, the
account under which the worker process runs is used. Instead of CredentialCache.DefaultCredentials, the
new NetworkCredential("userId", "p@s5w0rd", "MyDomain") can be used as well, in case a specific account
must be used.

Listing 4-19.  Client Communicating to a Web API Through a Proxy

WebClient client = new WebClient()
{
 Proxy = new WebProxy("proxy.server.com", 6666)
 {
 Credentials = CredentialCache.DefaultCredentials
 }
};
  
var response = client.DownloadString("http://localhost:12532/api/employees");

Of course, there is an element of security risk involved here, because the application has to store the Windows
account credentials. If storing the Windows credentials absolutely must be done by an application for a reason,
care must be taken to ensure credentials are protected. In the case of applications built using the .NET Framework,
data such as application-level credentials typically are stored in a configuration file. In such a case, encrypting the
configuration section is one effective way to ensure the credentials are safe. Chapter 15 provides details on encrypting
the configuration file.

HTTPS
One of the great things about HTTP is that it is human friendly: The request and response messages are in plain text
that is easier to read. On the flip side, it makes the HTTP less secure and is an easy target for man-in-the-middle
(MITM) and eavesdropping attacks. HTTPS is designed to make HTTP secure by letting it operate on top of the
SSL/TLS protocol. HTTPS URLs begin with “https://” and use port 443 by default.

There are two important aspects related to using HTTPS: First, it guarantees the user communicates with the web
site that she intends to and that the site to which the user is connected is not masquerading itself as some other site
that the user trusts.

www.it-ebooks.info

http://www.w3.org/
http://localhost:12532/api/employees
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

72

Second, it prevents anyone in the middle from reading or modifying the messages exchanged. HTTPS
accomplishes the latter by encrypting the entire message, including the request URI, headers, and cookies. For this
reason, some of the things we examined earlier like caching will not work with HTTPS.

HTTPS was developed to be used with a web browser, but it can be used with other clients as well. Similarly,
HTTPS is not limited only to web applications that serve up HTML web pages. HTTPS can secure ASP.NET Web API as
well. First, you will see how HTTPS works with the web browsers. Some of the key concepts introduced here, such as
encryption, are elaborated in much more detail in later chapters, specifically Chapter 6.

For the purpose of understanding this section, just assume that encryption is sort of a function that takes in two
arguments: a key and the plain text that returns the encrypted text or the cipher text as the output. The plain text here
is the message exchanged and the key is some random text that both the server and the browser share but no one else
will have. Decryption is simply the reverse of encryption. Given the key and the encrypted text, decryption produces
the plain text.

One problem you can sense right away is that a user would like to go to more than one web site and that a web
site cannot have one common key for all users; it has to be handled per user. Otherwise, it is very easy for a malicious
user to simply pick up the key for a web site, decrypt the message, and look at the messages exchanged.

It is not feasible for a web site, especially public-facing ones, to track all the users and assign and maintain keys
for individual users. Similarly, it is not practical for a user to have and manage dedicated keys for all the web sites that
he or she would like to visit. So, a random key has to be generated on the fly at the point when a user tries to connect
to an HTTPS web site. This process is called a handshake and is the most important part of HTTPS communication.
Once the web site and the browser have a shared key, it is easier to exchange the encrypted messages. The following
steps summarize the handshake process.

1.	 Browser issues a request over HTTPS to a web site.

2.	 Web site sends a certificate containing its public key.

3.	 Browser generates a random key, encrypts it using the web site’s public key, and sends it to
the web site.

4.	 Both web site and browser now have a shared key to proceed with the encrypted message
exchange.

I introduced a couple of new terms in the preceding steps that I have not touched on until now: the certificate
and the public key.

A certificate is issued to a web site by a well-known agency, and it can be traced back to the site to which it was
issued. No one can tamper with a certificate. If a certificate is issued to my-server.com, no one can tamper with it and
make it look like it is issued to another-server.com.

A certificate has two mathematically linked keys, a private key and a public key. A public key of a certificate can
be shared with anyone. A private key is secretly held by the web site to which the certificate was issued. Plain text that
was encrypted with a public key can be decrypted only with the private key.

With that understanding, let’s now revisit the preceding steps. The web site sends the public key down to the
browser. It is acceptable to give it to anyone; it is a public key after all. Even a malicious user can have the same public
key, but it cannot be used for decryption. The private key, which is within the safe custody of the web site, is a must for
decryption. Only the web site can decrypt and get the key sent by the browser.

One loophole you might anticipate is a malicious user getting a valid certificate with both the public and private
keys and sending the public key to the browser acting as a man-in-the-middle. Will the browser happily encrypt the
random key it just generated and send it off for the malicious user to intercept and decrypt using his private key?

The answer is no. This loophole is prevented by a browser making the following two checks.

1.	 The browser checks the web site to which it is connecting against the web site to which the
certificate (containing the public key that it received) has been issued.

2.	 The certificate must be issued by a certification authority (CA) it trusts, such as VeriSign,
Thawte, or GeoTrust.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

73

If the malicious user sends a valid certificate that is issued to his domain, as if the web site to which the user is
connecting to is sending it, the first validation step will fail. If the malicious user creates a certificate as if it is issued
to a popular e-commerce web site, the browser will still fail the validation step because the certificate is not issued by
one of the CAs the browser trusts.

If there is a failure in any of these checks, the browser complains and alerts the user, as shown in Figure 4-11.

Figure 4-11.  Browser warning

Configuring HTTPS for ASP.NET Web API Hosted in IIS
Configuring HTTPS for web-hosted ASP.NET Web API is the same as HTTPS enabling any other ASP.NET application.
From the client side, any HTTPS-capable device or application can consume the web API. There is nothing special
there as well.

Now, to mandate HTTPS for specific action methods that deal with the sensitive data, you can use an action filter
like the one shown in Listing 4-20. If you require HTTPS for all the methods, this filter can be configured as a global
filter. As another option, you can write a message handler that uses the preceding code or simply configure IIS to
mandate HTTPS if your web API is web-hosted.

Listing 4-20.  HttpsOnly Filter

public class HttpsOnly : ActionFilterAttribute
{
 public override void OnActionExecuting(HttpActionContext context)
 {
 var request = context.Request;
 
 if (request.RequestUri.Scheme != Uri.UriSchemeHttps)
 {
 var response = request.CreateResponse(HttpStatusCode.Forbidden);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ http anatomy and SeCurity

74

 response.Content = new StringContent("HTTPS Required");
 context.Response = response;
 }
 }
}

Note Y you have seen cookies in a previous section and you have just seen httpS. it is possible to specify at the time
of the creation of a cookie that it must be transmitted only through httpS. By setting the boolean Secure property of
the CookieHeaderValue object to true, you can create a secure cookie.

Fiddler: A Tool for Web Debugging
Fiddler, a web debugging proxy, is a useful tool to capture and analyze HTTP as well as the HTTPS traffic between the
computer running Fiddler and the outside. Fiddler also has a feature to build a complete request with headers, send it
to an HTTP endpoint such as the web API, and inspect the response returned by the web API. It is virtually impossible
to develop a production-grade web API without using a debugger like Fiddler. Based on the version you use, the
Fiddler user interface could be slightly different from the one shown in Figure 4-12.

Figure 4-12. Fiddler (4.4.1.1 beta)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

75

The left pane lists the requests captured. When a specific request is selected, the Inspectors tab on the right pane
shows the request on the top and the corresponding response on the bottom. The Composer tab allows the requests
to be hand-crafted and submitted with the HTTP method of your choice.

The older versions of Fiddler do not capture the traffic from localhost. One common workaround is to use
localhost with a dot suffix (http://localhost.:<port>), use the machine name instead of localhost, or add an entry
to the C:\Windows\System32\drivers\etc\hosts file for 127.0.0.1 and use the same.

The following list details how Fiddler can be configured to capture the traffic with different types of applications.
Any application can consume a web API. Hence, learning to configure Fiddler to capture the traffic for all of the
following scenarios is important.

1.	 Internet Explorer: When the Fiddler tool is launched, it registers itself as the system
proxy. For this reason, requests from the applications that use WinInet such as Internet
Explorer are automatically intercepted by Fiddler. No setting or configuration changes
are needed.

2.	 Other browsers like Firefox: Fiddler can be configured as the web proxy with the browser
so that Fiddler can start intercepting the requests. Fiddler runs on port 8888, so the proxy
can be configured as localhost:8888 or 127.0.0.1:8888.

3.	 Nonbrowser applications such as a .NET Framework WPF application: Typically, these
applications use the WebClient for HTTP communication. The Proxy property of the
WebClient must be set to an instance of the WebProxy with the host as localhost and port
as 8888 like this: Proxy = new WebProxy("localhost", 8888).

4.	 ASP.NET web application: If you need to look at the HTTP client requests made by your
code in an ASP.NET application or maybe a third-party library you are using in your ASP.
NET application, it is possible to configure Fiddler as the proxy in the web.config file, as
shown in Listing 4-21.

Listing 4-21.  Web.config Configuring Fiddler as Proxy

<configuration>
 <system.net>
 <defaultProxy>
 <proxy usesystemdefault="False" bypassonlocal="True"
 proxyaddress="http://127.0.0.1:8888" />
 </defaultProxy>
 </system.net>
</configuration>

Capturing and Decrypting HTTPS Traffic
Fiddler can capture and even decrypt HTTPS traffic. To enable that option, select Tools ➤ Fiddler Options. . . and
select the Decrypt HTTPS traffic check box as shown in Figure 4-13.

www.it-ebooks.info

http://localhost.:%3cport%3e
http://127.0.0.1:8888/
Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

76

When you select the Decrypt HTTP traffic check box, Fiddler asks you if you would like to add the
Fiddler-generated root certificate to the trusted CA list in your machine. Select No and click OK. Fiddler is now
all set to capture and decrypt HTTPS traffic.

To see Fiddler in action capturing the HTTPS traffic, go to https://www.google.com in Internet Explorer, with
Fiddler running. As part of the capture, Fiddler sends the public key of a certificate it just generated to Internet
Explorer, as if it is the certificate from www.google.com. Internet Explorer promptly shows “There is a problem with
this website’s security certificate.”

If you go to the site without heeding Internet Explorer’s warning, Internet Explorer goes ahead and shows the
page. If you now go to Fiddler, you can see the traffic it has captured in all clear text, although sent over HTTPS.
Internet Explorer shows the URL bar in red. If you look at the certificate error, it shows that the certificate is issued to
www.google.com, but it was issued by DO_NOT_TRUST_Fiddler_Root, which is not a CA that Internet Explorer trusts
(see Figure 4-14).

Figure 4-13.  Fiddler options

www.it-ebooks.info

https://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

77

Fiddler as Man-in-the-Middle
Fiddler’s HTTPS capture and decryption functionality can be used to simulate an MITM attack on ASP.NET Web API
secured by transport security (HTTPS). The preceding section covered how a browser reacts to Fiddler’s attempt to
capture HTTPS traffic. In this section, we use a nonbrowser client, a C# console application that uses the WebClient
class for HTTP communication. The objective of this section is to understand how critical it is to pay attention to the
errors that result in HTTPS and to emphasize the importance of not ignoring or bypassing these errors just to get
things working. The following steps show how to simulate the MITM attack.

1.	 Deploy the ‘TalentManager’ ASP.NET Web API application that we created in Chapter 2 in
the local IIS. IIS Express does not support HTTPS.

2.	 Launch Visual Studio as an administrator. Select the Use Local IIS Web Server option
on the Web tab of the ASP.NET Web API application in Visual Studio and let it create the
virtual directory for you.

3.	 Using IIS Manager, create a self-signed certificate (from the root node corresponding to
that of your machine, IIS > Server Certificates).

4.	 Using this certificate, create an HTTPS binding to the web site the web API application is
part of. With that, you are ready to submit the requests to the web API through HTTPS. See
the section “Enabling HTTPS in IIS through Self-Signed Certificates” in Chapter 9 for more
information as well as screenshots.

5.	 Create a console application and make a request to our web API, as shown in Listing 4-22.
Because the certificate used to create HTTPS binding in the preceding step is issued to the
local machine name, you need to use the machine name to connect instead of
https://localhost.

Figure 4-14.  Certificate error

www.it-ebooks.info

https://localhost/
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

78

Listing 4-22.  Client Communicating to HTTPS Web API (Console App)

WebClient client = new WebClient();
var response = client.DownloadString
("https://mymachine/talentmanager/api/employees/1234");
 

6.	 At this point, your console application must be successfully making the web API call
with no errors. Now include a line in the preceding code to let Fiddler intercept the calls
through HTTPS: client.Proxy = new WebProxy("localhost", 8888);

7.	 Ensure Fiddler is capturing the traffic from all the processes, not just the web browsers.
If you look at the task bar, Fiddler must show “Capturing All Processes.” If Fiddler shows
“Web Browsers” in the task bar, click on the same and change it to “All Processes.”

8.	 With Fiddler running and Decrypt HTTPS traffic selected, run the console application.
An exception gets thrown: “The underlying connection was closed: Could not establish
trust relationship for the SSL/TLS secure channel.” There is an inner exception, too: “The
remote certificate is invalid according to the validation procedure.” Clearly, WebClient is
able to sense something is wrong with the certificate Fiddler has cooked up to decrypt the
HTTPS traffic.

9.	 In the case of a web browser, you can go ahead and view the page, despite the browser’s
warning. What about WebClient? Yes, it is possible. You will need to modify the code,
as shown in Listing 4-23.

Listing 4-23.  Modified Client Communicating to HTTPS Web API (1Console)

ServicePointManager.ServerCertificateValidationCallback =
(object sender, X509Certificate cert, X509Chain chain, SslPolicyErrors error) =>
{
 Console.WriteLine(chain.ChainStatus.First().StatusInformation);
 return true;
};
 
WebClient client = new WebClient();
var response = client.DownloadString("https://mymachine/talentmanager/api/
employees/1234");
 

10.	 Now the ServicePointManager callback prints, “A certificate chain processed, but
terminated in a root certificate which is not trusted by the trust provider.” Obviously, root
certificate is the DO_NOT_TRUST_FIDDLER_ROOT. Because true is returned, it continues
to process. However, bypassing the certificate check like this is not good practice. The
exception gets thrown because of a bad certificate as well as when someone mounts an
MITM attack on your web API. Simply ignoring the error makes your web API vulnerable
to MITM attacks.

Caution■■   Bypassing the certificate checks in a production environment with code like that of Listing 4-23 is
highly risky. We tend to take the path of least resistance, especially under the influence of a stressful project
schedule. It is acceptable to take shortcuts like the preceding code during development, but you must have sound
software development processes in place to ensure this code does not get promoted to production and become a big
risk for your users.

www.it-ebooks.info

https://mymachine/talentmanager/api/employees/1234
https://mymachine/talentmanager/api/employees/1234
https://mymachine/talentmanager/api/employees/1234
http://www.it-ebooks.info/

Chapter 4 ■ HTTP Anatomy and Security

79

Here is a small tip on web debugging: The web browsers do have built-in tools to look at the requests and the
responses. For example, as shown in Figure 4-15, Internet Explorer has F12 Developer Tools available on the Tools
menu. If you want to quickly inspect the request and response, when your client is the web browser you can use a tool
like this without having to run Fiddler.

Summary
In this chapter, we looked at the basics of HTTP from the point of view of building a web API that complies with the
HTTP specification through ASP.NET Web API. By sticking to the HTTP specification, we ensure that any device or
software that is HTTP compliant can use the service.

We also examined some advanced HTTP concepts, such as caching, ETags, and CORS. Caching is preferred
for speed but not for security, depending on the data that is cached. ETags, when used with caching, can reduce
bandwidth usage. Without caching, ETags can be used for concurrency checking.

CORS is a specification that helps us overcome the constraints imposed by same origin policy. CORS is supported
only in modern browsers. There are still dinosaurs left out there in the wild with no CORS support. Use CORS only
when absolutely needed.

We then looked at HTTPS or secure HTTP, the transport layer security. Finally, we explored how to use Fiddler,
the ultimate tool for HTTP debugging, to capture and decrypt HTTPS traffic.

Figure 4-15.  Internet Explorer F12 Developer Tools

www.it-ebooks.info

http://www.it-ebooks.info/

81

Chapter 5

Identity Management

In this chapter, I cover an important aspect of securing an application: identity management. The term has a broader
meaning but our focus is limited to how a subject or an entity gets authenticated and how the actions an entity
attempts to perform are authorized by an application in the context of the .NET Framework.

An entity, which can be a human being, an organization, a hardware device, or application software, makes a
request to access a resource. A resource can be a web service, a web site, a web page in a web site or even a UI element
in a web page, depending on the context of the application. Unless the resource is public and is available to everyone,
some kind of access control will be implemented by the application owning the resources. To enforce access control,
the entity that is issuing the request must first be identified and authenticated.

Authentication and Authorization
Identity management has two important facets: authentication and authorization.

Authentication is the process of discovering the identity of an entity through an identifier •	
and verifying the identity through validating the credentials provided by the entity against an
authority.

Authorization is the process of determining whether an identity is allowed to perform a •	
requested action.

An application identifies an entity, or user, through an identifier, or user ID. For example, assume you are a user
trying to establish an identity with an application. Suppose you inform the application your identifier is lbadri (which
is actually my identifier). At this point, the system can establish an identity for you, based on the identifier you have
provided. But to be a trustworthy application, it must validate that you really are who you claim to be. That process
is called authentication, which is sometimes abbreviated to AuthN. It is accomplished by accepting a credential
(typically a password) and validating it against the password stored against the user ID in the application data store.
Hopefully you will not know my password and will not be able to guess it, and thus your attempt to authenticate using
my credentials will be failed by the application. This is one of the most fundamental building blocks of the application
security.

The user can be authenticated through three types of credentials.

1.	 Based on what a user knows (knowledge); for example, a password or PIN.

2.	 Based on what a user owns (ownership); for example, a certificate or USB dongle.

3.	 Based on what the user is (inherence); for example, a fingerprint or DNA sequence.

It is typical for an application to implement the authentication mechanism based on one of the three factors
from the preceding list, the knowledge factor being the most frequently used. An application with higher security
needs implements an authentication mechanism based on two factors from the list; this kind of mechanism is called

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

82

two-factor authentication (TFA or 2FA). An example of TFA is a corporate network that requires the use of a hardware
token or a USB dongle along with a password. Another well-known example is an ATM: An ATM requires the debit
card that you own and the PIN that you know before it allows you to complete a transaction. It is uncommon to see an
application implementing three-factor security, at least in the enterprise landscape.

Once an authenticated identity is established, the application can control the access to the application resources
based on this identity. This process is called authorization, which is sometimes abbreviated to AuthZ. An extremely
simple and trivial application might authorize resource access purely based on the identity. But most practical
applications authorize access based on attributes, such as roles, that are associated with the identity.

Role-Based Security
Role-based security is the most commonly used security model in the business or enterprise applications. The major
benefit of using a role-based security model is the ease of security administration. The access rights are not given to
an individual user, but to an abstraction called a role. A user gets assigned to one or more roles, through which the
user gets access rights.

With this model, the security administration becomes a matter of managing the roles (typically far fewer than
users) by assigning and unassigning roles to the users. By assigning an access right to a role, an administrator can
assign the same access right to hundreds of users in a single operation. Also, by assigning a user to a role, the user
immediately gets all the access rights defined for that role. The same ease of administration is applicable to the
unassignment operations as well.

Role-based security has been around for a long time in the .NET Framework, starting with version 1.0. Identity
and principal are the two abstractions provided by the .NET Framework for implementing role-based security.

Identity and Principal
In the .NET Framework, an identity object represents the user on whose behalf the code runs. A principal object
represents the security context of the user on whose behalf the code runs, including the user’s identity and the roles
to which that user has been assigned. The IIdentity and IPrincipal interfaces form the basis of Role-Based Access
Control (RBAC) implementation in the .NET Framework. IIdentity represents the identity of the user. IPrincipal
represents the identity and the roles associated with the user. IPrincipal has the Identity property and the
IsInRole(string) method that accepts a role and returns true if the principal is a member of the role.

Figure 5-1 shows the IIdentity and IPrincipal interfaces.

<<interface>>

<<interface>>

IPrincipal

IIdentity+IsInRole(in role : string) : bool
+Identity() : IIdentity

+Name() : string
+AuthenticationType() : string
+IsAuthenticated() : bool

Figure 5-1.  IIdentity and IPrincipal

Every thread in the .NET Framework has the CurrentPrincipal property, which is of type IPrincipal. The
CurrentPrincipal property is more like a key hanger on which to hang the principal object. If there is a key hanger in
the house, it is easy to hang the key there so that whoever needs the key can easily locate it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

83

Typically, the module that is responsible for authentication creates the principal object and hangs the principal
on the key hanger, which is Thread.CurrentPrincipal. This is typically done in the main thread and any new
thread created automatically gets the same principal. The principal object is fundamental to role-based security as
implemented by the .NET Framework.

There are two out-of-box implementations available for the identity and principal abstractions in the .NET
Framework.

1.	 GenericIdentity and GenericPrincipal, for the custom scenarios.

2.	 WindowsIdentity and WindowsPrincipal, for Windows authentication-based scenarios.

The GenericIdentity and WindowsIdentity classes implement the IIdentity interface, whereas the
GenericPrincipal and WindowsPrincipal classes implement the IPrincipal interface.

Using Generic Identity in a WinForms Application
The GenericIdentity and GenericPrincipal classes represent a generic user and a generic principal, respectively.
Although the .NET Framework allows custom classes to be created implementing the IIdentity and IPrincipal
interfaces, when the application-specific data and behavior are not required to be a part of the identity and principal
objects, it is more convenient to use the out-of-the-box generic implementations instead of creating custom classes. I’ll
now show you how these classes can be used in a simple WinForms application. I’ve chosen WinForms only to keep
the example easy to understand at a glance. The concepts you see here apply to any .NET Framework application.

As shown in Listing 5-1, Program.cs has the Main method as the entry point. The Main method pops a modal
dialog LoginForm, which authenticates and sets Thread.CurrentPrincipal for the other application parts to exercise
RBAC. The Main method requires the user to be in the ‘General User’ role to show the main screen. MainForm is the
main screen and it has the delete functionality, which requires the user to be in the ‘Admin’ role.

Listing 5-1.  Program.cs

static void Main()
{
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 
 DialogResult result = DialogResult.None;
 using (var loginForm = new LoginForm())
 result = loginForm.ShowDialog();
 
 if (result == DialogResult.OK)
 {
 // By the time execution comes here, user has been shown the login screen, authentication
 // process completed and principal object created and set in Thread.CurrentPrincipal
 var permission = new PrincipalPermission(null,"General User");
 permission.Demand();
 
 Application.Run(new MainForm());
 }
}
 

4
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

84

The Login screen has two text boxes, txtUserId and txtPassword, to receive credentials from the user. If you
click the Login button, the Login screen authenticates the credentials (I haven’t implemented this in the example for
brevity), creates a generic principal, and hangs that in the Thread.CurrentPrincipal key hanger for other classes to
use. Listing 5-2 shows the LoginForm code.

Listing 5-2.  LoginForm.cs

public partial class LoginForm : Form
{
 public LoginForm()
 {
 InitializeComponent();
 }
 
 private void btnLogin_Click(object sender, EventArgs e)
 {
 // Authenticate using this.txtUserId and this.txtPassword
 
 Thread.CurrentPrincipal = new GenericPrincipal
 (
 new GenericIdentity(this.txtUserId.Text),
 new[] { "General User", "Admin" } // roles hard-coded for the purpose of illustration
);
 
 this.DialogResult = DialogResult.OK;
 this.Close();
 }
}
 

MainForm, on load, disables the Delete button if the current principal is not in the ‘Admin’ role. In addition, the
event handler is decorated with the PrincipalPermission attribute that demands the ‘Admin’ role. The prior step is
for the visual clue and the latter step is to make sure the delete code executes only for the ‘Admin’ role even if some
other part of the application calls the method directly. Using the attribute is the declarative way of doing RBAC.
The same can also be done in the code, just as how it is done in the Main method, and that is the imperative way of
doing RBAC.

Listing 5-3 shows the MainForm code.

Listing 5-3.  MainForm.cs

public partial class MainForm : Form
{
 public MainForm()
 {
 InitializeComponent();
 }
 
 private void MainForm_Load(object sender, EventArgs e)
 {
 btnDelete.Enabled = Thread.CurrentPrincipal.IsInRole("Admin");
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IdentIty ManageMent

85

 [PrincipalPermission(SecurityAction.Demand, Role="Admin")]
 private void btnDelete_Click(object sender, EventArgs e)
 {
 // Do some important admin stuff here
 }
}

In the preceding example, I used a generic principal with a generic identity that gets authenticated on the
successful login at the application startup, which is then used by the downstream classes to enforce RBAC. Even if
your application has hundreds of forms, access control will be simply a matter of specifying the roles against the
actions, as shown in the example declaratively using the PrincipalPermission attribute.

Using Windows Identity in a Console Application
Similar to the GenericIdentity and GenericPrincipal classes, the WindowsIdentity and WindowsPrincipal
classes implement IIdentity and IPrincipal, respectively, and are part of the .NET Framework library. However,
WindowsIdentity and WindowsPrincipal are specific to Windows authentication.

WindowsIdentity represents a Windows user or account and WindowsPrincipal allows access control through
Windows groups. I use a console application in Listing 5-4 to show these two classes in action.

Listing 5-4. WindowsIdentity and WindowsPrincipal Console App

WindowsIdentity id = WindowsIdentity.GetCurrent();
Console.WriteLine(id.Name);
Console.WriteLine(id.User);

foreach (var group in id.Groups)
 Console.WriteLine(group.Value);

foreach (var group in id.Groups.Translate(typeof(NTAccount)))
 Console.WriteLine(group);

WindowsPrincipal principal = new WindowsPrincipal(id);
Console.WriteLine(principal.IsInRole("Builtin\\Users"));

The code in Listing 5-4 can run as part of any application: console, WinForms, Windows Service, or even a
web application. Ultimately, it executes in a process space created under a Windows account. The static method
WindowsIdentity.GetCurrent() returns the identity represented by this Windows account. If you have this
code running in a console application on a computer to which you have logged in as MyDomain\Myself, then
WindowsIdentity represents this account. The Name property is just that: MyDomain\Myself.

I use the static method GetCurrent() to get the Windows account under which the code currently runs. It is also
possible to use the WindowsIdentity of some other Windows account, different from the account under which the
application runs, by creating an instance of the WindowsIdentity class using a Windows account token. The token can
be obtained by calling the Win API LogonUser() passing the user name, domain, and password.

Listing 5-5 shows how to manually create a WindowsIdentity instance.

Listing 5-5. WindowsIdentity Creation Using a Token

[DllImport("advapi32.dll", SetLastError = true)]
public static extern bool LogonUser(String lpszUsername, String lpszDomain, String lpszPassword,
 int dwLogonType, int dwLogonProvider, ref IntPtr phToken);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

86

[DllImport("kernel32.dll", CharSet = CharSet.Auto)]
public extern static bool CloseHandle(IntPtr handle);
 
static void Main(string[] args)
{
 string userName = "jqhuman";
 string password = "p@ssw0rd!";
 string domain = "Magic";
 IntPtr token = IntPtr.Zero;
 
 try
 {
 if (LogonUser(userName, domain, password, 3, 0, ref token))
 {
 using (var idBasedonToken = new WindowsIdentity(token))
 {
 // We now have the WindowsIdentity for username here!
 }
 }
 }
 finally
 {
 if (token != IntPtr.Zero)
 CloseHandle(token);
 }
}
 

You can use WindowsIdentity in this way to create WindowsPrincipal, which can be used for access control. As
part of the LogonUser() call, the user’s credentials are authenticated. In some situations, that is not required. Simply
creating a WindowsPrincipal instance for RBAC alone is sufficient. For these cases, WindowsIdentity supports a
constructor that takes in the User Principal Name (UPN), as shown in Listing 5-6.

Listing 5-6.  WindowsIdentity Creation Using UPN

var idUpn = new WindowsIdentity("Myself@MyDomain.com");
var principalUpn = new WindowsPrincipal(id);
bool isInRole = principalUpn.IsInRole("MyDomain\\SomeGroup");

IMPERSONATION

Impersonation is the ability of a thread to execute in a security context that is different from the context of the
process that owns the thread. Under the hood, the WindowsIdentity constructor that accepts the UPN calls
LsaLogonUser(), which uses Kerberos S4U. As part of the LsaLogonUser() call, no authentication happens.
Hence, the token returned by LsaLogonUser() will have the impersonation level of ‘Identification’ as against the
level of ‘Impersonation’ returned by LogonUser(). This can be verified by looking at the ImpersonationLevel
property of the WindowsIdentity object created using the token. It is possible to impersonate a user, as shown in
Listing 5-7, by using the WindowsIdentity object created using the token return by LoginUser().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

87

Listing 5-7.  Impersonation

Console.WriteLine("Before: " + WindowsIdentity.GetCurrent().Name);
 
using (WindowsIdentity id = new WindowsIdentity(token)) // LogonUser() token
{
 using (WindowsImpersonationContext impersonatedUser = id.Impersonate())
 {
 // WindowsIdentity.GetCurrent().Name will be that of impersonated identity
 Console.WriteLine("After: " + WindowsIdentity.GetCurrent().Name);
 
 impersonatedUser.Undo(); // Undo the impersonation, once done
 }
}

The Curious Case of Thread.CurrentPrincipal
Typically, the module that is responsible for authentication creates the principal object and hangs the principal on the
key hanger, which is Thread.CurrentPrincipal. This is typically done in the main thread and any new thread created
automatically gets the same principal. The principal object is fundamental to role-based security as implemented by
the .NET Framework.

What if you don’t use these interfaces or Thread.CurrentPrincipal at all and simply use your own custom
objects? Although you are reinventing the wheel, that approach can work. However, some of the .NET Framework
and third-party components will expect to retrieve the principal object from Thread.CurrentPrincipal
because that is the standard. As an example, the property User in ApiController returns Thread.CurrentPrincipal.
If your authentication mechanism does not set it, the User property will return the generic dummy principal set by
HttpServer in the ASP.NET Web API pipeline.

However, setting your principal object in Thread.CurrentPrincipal alone is not sufficient, if you web host your
ASP.NET Web API. ASP.NET Web API can be web hosted using the IIS/ASP.NET infrastructure or self-hosted on any
process such as a Windows service. In either case, you must set the principal in Thread.CurrentPrincipal. For web
hosting, you must also set the principal in HttpContext.Current.User. If you expect to host your code both ways, you
must check HttpContext.Current.User for null, before accessing the User property, because it will be null in the
case of self-hosting.

There is another important scenario in ASP.NET Web API related to Thread.CurrentPrincipal. It is
possible to return IQueryable<T> from the ASP.NET Web API action method. If you refer to the identity set in
Thread.CurrentPrincipal in the query, the principal will not be on the thread anymore when the deferred execution
of the query happens, leading to unexpected results. By the time media type formatter runs, where the query is
actually executed, the principal set in Thread.CurrentPrincipal by a message handler would have been already
cleaned up. This behavior could change for the better in the future releases of ASP.NET Web API. One potential
workaround, meanwhile, is to retrieve the identity-related information out of Thread.CurrentPrincipal and store
it locally. For example, you can use the following snippet to retrieve the list of employees based on the reporting
manager, who is the authenticated user.

public IQueryable<EmployeeDto> GetEmployees()
{
 string manager = User.Identity.Name;
 return context.Employees
 .Where(e => e.ManagerId == manager)
 .Select(e => new EmployeeDto(e));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

88

Do not use Thread.CurrentPrincipal or the User property of ApiController that internally returns
Thread.CurrentPrincipal, in your expression tree directly like this: Where(e => e.ManagerId == User.Identity.Name).

For more information related to Thread.CurrentPrincipal, go to Dominick Baier’s blog: “Important: Setting
the Client Principal in ASP.NET Web API” (http://leastprivilege.com/2012/06/25/important-setting-the-
client-principal-in-asp-net-web-api/) and “Alternative to Thread.CurrentPrincipal in ASP.NET Web API”
(http://leastprivilege.com/2013/03/11/alternative-to-thread-currentprincipal-in-asp-net-web-api/).

Claims-Based Security
The identity model covered so far focuses on a user presenting the identifier and the credentials to an application
and the application establishing an identity to the user. Based on the credentials presented, if the application is able
to authenticate that the user is what he is claiming to be, the identity becomes an authenticated identity. The user is
authorized to have access to resources, based on the roles of which the user is part.

Another way to model the security is based on claims. The most fundamental aspect of a claims-based identity
is the set of claims. A claim is just a claim—it is a statement that an entity (a user or another application) makes about
itself. The following list shows examples of claims.

This user’s name is Badri.•	

Badri’s e-mail is evelyn.mallory@evilandmalicious.com.•	

Badri’s age is four and a half.•	

Badri can delete users.•	

Compared to the earlier model in which a user presents the credentials directly to the application, in the claims-based
model the user presents only the claims and not the credentials to the application. For a claim to be of any practical
value, it must come from an entity the application trusts.

The underpinning of claims-based architecture is trust. If I present a claim that my e-mail is
evelyn.mallory@evilandmalicious.com, a human being will know right away that my claim is not a valid one.
An application does not have the intelligence to make this determination, so it must rely on trust. If I present to an
application the claims created by an entity that the application trusts, then the application goes by the trust and
accepts the claim. In this case, the application relies on the other entity. This kind of application is known as a relying
party (RP) application.

The entity that the RP application relies on is called the issuing authority. The issuing authority issues security
tokens (which are different from the Windows tokens covered in the preceding section). I provide more details on
security tokens in the last section of this chapter, but for now just imagine a token as a container holding a set of
claims together for secure transport.

The endpoint of an issuing authority that accepts requests for tokens and issues the same is called a Security
Token Service (STS). When a user requests a token, the issuing authority must make sure the user is what she claims
to be. In other words, the issuing authority must authenticate the user based on the credentials. Thus, authentication
happens even in claims-based security, but the difference is that the authentication responsibility is delegated to the
issuing authority and is no longer with the application.

STS can choose to keep the responsibility of authentication within itself (based on how it is designed) or delegate
that to another entity called an identity provider (IdP). The IdP validates the user credentials and communicates the
validity of the credentials back to STS. If the credentials are valid, STS issues a token with claims. The user presents
the token to the RP application, which validates the token, extracts the claims, establishes the identity based on the
claims, and subsequently controls the access based on the claims. Because claims are the foundation for this model, it
is known as claims-based security.

Figure 5-2 illustrates the sequence of steps that happen in a claims-based security model.

www.it-ebooks.info

http://leastprivilege.com/2012/06/25/important-setting-the-client-principal-in-asp-net-web-api/
http://leastprivilege.com/2012/06/25/important-setting-the-client-principal-in-asp-net-web-api/
http://leastprivilege.com/2013/03/11/alternative-to-thread-currentprincipal-in-asp-net-web-api/
http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

89

1.	 The user requests an action. The RP asks for a token.

2.	 The user presents the credentials to the issuing authority that the RP application trusts.

3.	 The issuing authority issues a signed token with claims, after authenticating the user’s
credentials.

4.	 The user presents the token to the RP application. The application validates the token
signature, extracts the claims, and—based on the claims—either accepts or denies the
request.

Real-World Analogy
Claims-based security is different from the way security is modeled traditionally, but it is more natural because it is
very analogous to what we do in the real world.

Take the case of air travel. I book my flight through a web site and check in online. I arrive at the airport, proceed
to the boarding counter, and claim that I am the one who is supposed to travel as per the ticket and boarding pass
that I have in my hand. The airline agent at the boarding counter has the responsibility to check that I am indeed
the person who can travel with that ticket. The agent doesn’t verify it himself. Instead he asks for my driver’s license,
which is issued by the Department of Motor Vehicles (DMV), an entity the airline trusts. The DMV has already
authenticated my credentials and issued a license valid until a specific date. I present my license to the airline agent.
He accepts it, validates the license for authenticity by ensuring the license is not tampered with, and reviews the
license details, all before letting me board.

In this example, the airline is the RP that relies on the DMV, which is the issuing authority. The DMV issues the
license, which is the token. The license includes information like my photo, name, and age that represent the claims
that the airline or the RP is interested in. In addition, my driver’s license contains mechanisms such as a hologram
to make sure someone does not tamper with the license information. The hologram is the equivalent of the issuing
authority’s signature, to ensure that the token cannot be forged.

In the real world, RPs typically trust government agencies. Such agencies issue documents like a driver’s license,
a state ID, or a passport. There are many other kinds of real-world scenarios that involve RPs, such as restaurants or
bars serving alcoholic beverages that are restricted to a certain age group, retail stores selling goods that can be sold
only to people above a certain age, or movie theaters screening movies that are not suitable for all.

I’ve provided the preceding real-world examples to illustrate the main concepts of claims-based security. Of
course, the examples do not strictly correspond to the actual process of claims-based security in web-based software
applications. For example, in a claims-based security model the security token typically is requested and obtained
almost immediately, at the point when the RP application asks for it. In the airline scenario, a person doesn’t go to
an airline boarding counter, receive a request for an ID, and then jump into his car and drive to the DMV to get his
driver’s license. Another difference is that a driver’s license is issued with a validity period of several years, but no
security token has such a long life.

Issuing
Authority
(STS and IdP)

User

Relying Party

3

2

4

1

Figure 5-2.  Claims-based security

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

90

Claims-Based Access Control vs. Role-Based Access Control
The fundamental difference between RBAC and claims-based access control is the criterion necessary to get
authorized to perform an action.

In RBAC, being in a role is the necessary criterion to get authorized.•	

In claims-based access control, having a claim with the correct value as expected by the •	
application is the necessary criterion to get authorized.

Take the case of a business requirement that states only store managers can make discounts to the list price of the
items sold in the store. If the discounting logic is implemented in a method, say MakeDiscount(), then the role-based
approach of access control is to check if the user is in a role, say ‘StoreManager,’ to allow or deny the method call. In
the case of the claims-based approach, a call to the method MakeDiscount is allowed only if the user presents a valid
claim with a type, such as ‘canMakeDiscount’ and a value of ‘true.’

What is the basis for the issuing authority to create a ‘canMakeDiscount’ claim with a value of ‘true’? It can be
anything, including the user being in the role of ‘StoreManager’! If the claim ultimately is going to depend on the
role, what value does claims-based security bring to the table? Well, by adding a level of abstraction over roles, access
control checking logic in the application is simplified. Also, the application does not need to change when the access
control logic changes. This is similar to the benefit you get for accessing a database from your application through an
ODBC driver. Even if the underlying database engine changes, say from Oracle Server to Microsoft SQL Server, your
application code will not be impacted by the change.

There are other benefits to gain from implementing a claims-based model. The application is outsourcing
authentication and the related modules to the issuing authority. Hence, the application need not provide the
mechanisms for account management, such as account and password creation, reset, and other related features.
Also, the application can support multiple identity providers (e.g., Windows Live, Google, Yahoo!, and Windows
Authentication). The users need not create an account specific to the application and can reuse their existing
accounts.

Using Claims-Based Security
Claims are at the very core of the .NET Framework 4.5. The base claim classes such as Claim, ClaimsIdentity, and
ClaimsPrincipal are all part of mscorlib. Identity is claims based, by default. WindowsIdentity and GenericIdentity
inherit from ClaimsIdentity. The principal objects inherit from ClaimsPrincipal. Figure 5-3 illustrates this
inheritance in the .NET Framework 4.5.

IIdentity IPrincipal

ClaimsIdentity ClaimsPrincipal

WindowsIdentity WindowsPrincipalGenericIdentity GenericPrincipal

Figure 5-3.  Identity and principal classes in the .NET Framework 4.5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

91

The classes from Windows Identity Foundation (WIF) are all absorbed into the .NET Framework 4.5. The WIF
classes mainly are spread across three assemblies: System.Security.Claims, System.IdentityModel, and
System.IdentityModel.Services.

Implementing Role-Based Access Control Using Claims
The changes made to the identity and principal classes in the .NET Framework 4.5 are meant to be backward
compatible and work very well with the traditional RBAC, as long as there are role claims available. You can continue
to call the IsInRole() method even on a principal object that has an underlying ClaimsIdentity object. You are free
to use PrincipalPermission both imperatively and declaratively. In Listing 5-8, I show an example of implementing
RBAC using claims-based identity.

Listing 5-8.  Claims-Based Identity and RBAC

static void Main(string[] args)
{
 var claims = new List<Claim>()
 {
 new Claim(ClaimTypes.Name, "badri"),
 new Claim(ClaimTypes.Email, "badri@nowhere.com"),
 new Claim(ClaimTypes.Role, "StoreManager"),
 new Claim(ClaimTypes.Role, "BackOfficeClerk")
 };
 
 var id = new ClaimsIdentity(claims, "Dummy"); // Non-empty string is needed as authentication type
 var principal = new ClaimsPrincipal(new[] { id });
 Thread.CurrentPrincipal = principal;
  
 MakeDiscount(); // Call the method that needs authorization
}
 
[PrincipalPermission(SecurityAction.Demand, Role = "StoreManager")] // Declarative
private static void MakeDiscount()
{
 new PrincipalPermission(null, "BackOfficeClerk").Demand(); // Imperative
 Console.WriteLine(Thread.CurrentPrincipal.IsInRole("StoreManager"));
 Console.WriteLine("Discount of 10% has been applied");
}
 

In the preceding code, a ClaimsPrincipal object is created with claims and not roles and gets set in
Thread.CurrentPrincipal. Yet RBAC (both declarative and imperative) works and the method outputs True and
“Discount of 10% has been applied”.

Note■■   In the .NET Framework 4.5, when you create a new ClaimsIdentity you must set the authentication type
to a non-empty string with the method you used to authenticate. In Listing 5-8, I use “Dummy”. This sets the
IsAuthenticated property of ClaimsIdentity to true. Without this, all access control checks will fail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

92

Implementing Claims-Based Access Control Using Claims
Claims-based access control allows better separation of authorization rules from the core business logic. When
authorization rules need to change, the core business logic remains unaffected. To perform claims-based access
control, use the subclass ClaimsAuthorizationManager and configure it for use with the application. Then, instead
of using PrincipalPermission, use ClaimsPrincipalPermission. You have the freedom to use it declaratively or
imperatively. Listing 5-9 shows how you can modify the same code I showed you in Listing 5-8 to use claims-based
access control.

Listing 5-9.  Claims-Based Identity and Claims-Based Access Control

static void Main(string[] args)
{
 var claims = new List<Claim>()
 {
 new Claim(ClaimTypes.Name, "badri"),
 new Claim(ClaimTypes.Email, "badri@nowhere.com"),
 new Claim(ClaimTypes.Role, "StoreManager"),
 new Claim(ClaimTypes.Role, "BackOfficeClerk")
 };
 
 var id = new ClaimsIdentity(claims, "Dummy");
 var principal = new ClaimsPrincipal(new[] { id });
 Thread.CurrentPrincipal = principal;
  
 MakeDiscount(); // Call the method that needs authorization
}
 
[ClaimsPrincipalPermission(SecurityAction.Demand, Operation = "MakeDiscount", Resource =
"ListPrice")]
private static void MakeDiscount()
{
 Console.WriteLine("Discount of 10% has been applied");
}
 

To use the ClaimsPrincipalPermission attribute for claims-based access control, you need to subclass
ClaimsAuthorizationManager and plug it into the claims pipeline by making a configuration change. Following are
the two steps involved.

1.	 Create a subclass of ClaimsAuthorizationManager, as shown in Listing 5-10.

Listing 5-10.  ClaimsAuthorizationManager Subclass

public class AuthorizationManager : ClaimsAuthorizationManager
{
 public override bool CheckAccess(AuthorizationContext context)
 {
 string resource = context.Resource.First().Value;
 string action = context.Action.First().Value;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

93

 if (action == "MakeDiscount" && resource == "ListPrice")
 {
 ClaimsIdentity id = (context.Principal.Identity as ClaimsIdentity);
 
 if (id.Claims.Any(c => c.Type == ClaimTypes.Role &&
 c.Value.Equals("StoreManager")))
 if (id.Claims.Any(c => c.Type == ClaimTypes.Role &&
 c.Value.Equals("BackOfficeClerk")))
 return true;
 }
 
 return false;
 }
}

2.	 Configure it in app.config, as shown in Listing 5-11.

Listing 5-11.  App.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="system.identityModel"
 type="System.IdentityModel.Configuration.SystemIdentityModelSection,
 System.IdentityModel, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=B77A5C561934E089"/>
 </configSections>
 <system.identityModel>
 <identityConfiguration>
 <claimsAuthorizationManager
 type="ClaimsBasedIdentityConsoleApp.AuthorizationManager,

 ClaimsBasedIdentityConsoleApp"/>
 </identityConfiguration>
 </system.identityModel>
</configuration> 

Subclassing ClaimsAuthorizationManager involves one main task: Override the CheckAccess
(AuthorizationContext) method and provide your implementation to return true if access is allowed or false
otherwise. The input parameter is an object of type AuthorizationContext. It has all the necessary data for you to
make the authorization decision in terms of three properties: Principal, Action, and Resource. Principal represents
the subject for which the authorization is getting requested. Action and Resource are a set of claims representing the
action that the subject would like to perform and the resource that is to be acted on.

In Listing 5-10, the logic assumes the count of the resource and action claims will be one each. To authorize, it
checks if the identity of the principal has two role claims, one for StoreManager and another one for BackOfficeClerk.

With the preceding two steps, claims-based access control is implemented in the console application. Similar to
the preceding role-based example, the authorization is purely based on two roles, StoreManager and BackOfficeClerk.
The important point to note is, unlike RBAC, which specifies the roles directly in the code that implements business
rules, in claims-based access control the authorization rules are moved over to the ClaimsAuthorizationManager
subclass. The only reference to authorization is the usage of the ClaimsPrincipalPermission attribute and the
resource name and operation name that are passed in. However, roles can change over the time with new rules
coming in from the business users, impacting the code time and again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

94

As an illustration of how resilient the claims-based model is, let’s assume a new rule comes in: The current month
must be factored into the authorization logic; that is, no discount is allowed in the months of September through
December. To handle that rule change, only two changes are required in the code: Get an additional season claim
and check that claim in the ClaimsAuthorizationManager subclass. The core business logic does not change at all,
as CheckAccess() continues to return a true or false.

Implementing Claims-Based ASP.NET Web API
In this section, I show you how to implement a claims-aware ASP.NET Web API. I use the example API I have been
using all along, the Employee API. The business rule here is that to delete an employee the user must be in the
‘Human Resources Manager’ role and must be from the same department and country as the employee who is getting
deleted. This rule is comparatively complex, because it depends not only on the user claims but also on the resource
claims (the attributes of the employee, which is the resource).

1.	 As shown in Listing 5-12, create a global message handler and add it to the message
handlers collection in WebApiConfig under the App_Start folder. A claim is hard-coded
here for illustration. Getting the claims from a token issued by STS is covered in Chapter 7.
A claims principal is created using this single hard-coded claim, which is a name claim, and
passed to the Authenticate() method of ClaimsAuthenticationManager. The principal
object returned by the Authenticate() method is set in Thread.CurrentPrincipal and
HttpContext.Current.User.

Listing 5-12.  Authentication Handler

public class AuthHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 // Pretend this claim comes from a token minted by an STS
 var claims = new List<Claim>() { new Claim(ClaimTypes.Name,
 "jqhuman") }; // User Id of John Q Human
 
 var id = new ClaimsIdentity(claims, "dummy");
 var principal = new ClaimsPrincipal(new[] { id });
 
 var config = new IdentityConfiguration();
 var newPrincipal = config.ClaimsAuthenticationManager
 .Authenticate(request.RequestUri.ToString(),
 principal);
 Thread.CurrentPrincipal = newPrincipal;

 if (HttpContext.Current != null)
 HttpContext.Current.User = newPrincipal;
 
 return await base.SendAsync(request, cancellationToken);
 
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IdentIty ManageMent

95

2. Create a subclass of ClaimsAuthenticationManager so that the initial principal object
created with the hard-coded claim can be enriched with more local claims. In this
example, the claim is hard-coded. However, even if an STS is used it might not have
access to the human resources database. So, based on the value of the name claim, get
the department, country, and the role and add those as additional claims. Of course, for
brevity, values of those three additional claims are hard-coded in Listing 5-13.

Listing 5-13. ClaimsAuthenticationManager

public class AuthenticationManager : ClaimsAuthenticationManager
{
 public override ClaimsPrincipal Authenticate(string resourceName,

ClaimsPrincipal incomingPrincipal)
 {
 if (incomingPrincipal == null ||
 String.IsNullOrWhiteSpace(incomingPrincipal.Identity.Name))
 throw new SecurityException("Name claim missing");

 // Go to HR database and get the department to which user is assigned
 // Also, get the role of the user and the country user is based out of
 string department = "Engineering";
 var deptClaim = new Claim("http://badri/claims/department", department);
 var roleClaim = new Claim(ClaimTypes.Role, "Human Resources Manager");
 var countryClaim = new Claim(ClaimTypes.Country, "US");

 ClaimsIdentity identity = (ClaimsIdentity)incomingPrincipal.Identity;
 identity.AddClaim(deptClaim);
 identity.AddClaim(roleClaim);
 identity.AddClaim(countryClaim);

 return incomingPrincipal;
 }
}

3. Create a subclass of ClaimsAuthorizationManager and implement the authorization rules
in the CheckAccess() method in Listing 5-14. This is similar to the previous subclass in
Listing 5-10, but this code handles multiple resource and action claims. You will need two
resource claims in addition to the name claim: the department claim of the resource (read
employee) and the country claim of the resource.

Listing 5-14. ClaimsAuthorizationManager

public class AuthorizationManager : ClaimsAuthorizationManager
{
 public override bool CheckAccess(AuthorizationContext context)
 {
 var resource = context.Resource;
 var action = context.Action;

 string resourceName = resource.First(c => c.Type == ClaimTypes.Name).Value;
 string actionName = action.First(c => c.Type == ClaimTypes.Name).Value;

www.it-ebooks.info

http://badri/claims/department
http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

96

 if (actionName == "Delete" && resourceName == "Employee")
 {
 ClaimsIdentity identity = (context.Principal.Identity as ClaimsIdentity);
 if (!identity.IsAuthenticated)
 return false;

 var claims = identity.Claims;
 
 string employeeDepartment = resource.First(c => c.Type ==

 "http://badri/claims/department").Value;
 string employeeCountry = resource.First(c => c.Type == ClaimTypes.Country).Value;
 
 if (claims.Any(c => c.Type == "http://badri/claims/department" &&
 c.Value.Equals(employeeDepartment)))
 if (claims.Any(c => c.Type == ClaimTypes.Country &&
 c.Value.Equals(employeeCountry)))
 if (claims.Any(c => c.Type == ClaimTypes.Role &&
 c.Value.Equals("Human Resources Manager")))
 return true;
 }
 return false;
 }
} 

4.	 Register the ClaimsAuthenticationManager subclass and the
ClaimsAuthorizationManager subclass in web.config, as shown in Listing 5-15.

Listing 5-15.  Web.config Entries

<configuration>
 <configSections>
 ...
 <section name="system.identityModel"
 type="System.IdentityModel.Configuration.SystemIdentityModelSection,
 System.IdentityModel, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=B77A5C561934E089"/>
 </configSections>
 ...
 <system.identityModel>
 <identityConfiguration>
 <claimsA�uthenticationManager

type="ClaimsBasedWebApi.Authent�icationManager,
ClaimsBasedWebApi"/>

 <claimsA�uthorizationManager
type="ClaimsBasedWebApi.Authori�zationManager,

ClaimsBasedWebApi"/>
 </identityConfiguration>
 </system.identityModel>
 

www.it-ebooks.info

http://badri/claims/department
http://badri/claims/department
http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

97

5.	 Implement the ApiController action method, as shown in Listing 5-16. Because
the ClaimsAuthorizationManager subclass needs the resource claims to implement
the authorization logic, the ClaimsPrincipalPermission attribute cannot be used.
Create an instance of AuthorizationContext, attach resource claims to it, and call the
CheckAccess() method, explicitly passing the context (done in the extension method
defined in the PrincipalHelper class for the IPrincipal type). Unlike the case of using
ClaimsPrincipalPermission, flow is controlled through a logical bool check and not by
catching a SecurityException.

Listing 5-16.  EmployeesController Delete

public HttpResponseMessage Delete(int id)
{
 // Based on ID, retrieve employee details and create the list of resource claims
 var employeeClaims = new List<Claim>()
 {
 new Claim(ClaimTypes.Country, "US"),
 new Claim("http://badri/claims/department", "Engineering")
 };
 
 if (User.CheckAccess("Employee", "Delete", employeeClaims))
 {
 //repository.Remove(id);
 return new HttpResponseMessage(HttpStatusCode.NoContent);
 }
 else
 return new HttpResponseMessage(HttpStatusCode.Unauthorized);
}
 
public static class PrincipalHelper
{
 public static bool CheckAccess(this IPrincipal principal, string resource, string action,
 IList<Claim> resourceClaims)
 {
 var context = new AuthorizationContext(principal as ClaimsPrincipal,
 resource, action);
 resourceClaims.ToList().ForEach(c => context.Resource.Add(c));
 
 var config = new IdentityConfiguration();
 return config.ClaimsAuthorizationManager.CheckAccess(context);
 }
} 

6.	 To test the security implementation, submit a DELETE request to EmployeesController.
You can either use Fiddler to do that or have the /Home/Index view changed to the code
shown in Listing 5-17.

www.it-ebooks.info

http://badri/claims/department
http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

98

Listing 5-17.  Index View

@section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#delete').click(function () {
 $.ajax({
 type: "DELETE",
 url: "api/employees/12345",
 success: function (data) {
 alert('Employee deleted');
 }
 });
 });
 });
 </script>
}
<div>
 <input id="delete" type="button" value="Delete" />
</div>
 

The important takeaway here is that code-based access control is elegant to write and easier to maintain. Unless
the authorization can be enforced purely through being in a role or not, which is unlikely for practical scenarios, the
authorization logic lies scattered all around with RBAC.

Security Token
The missing piece in the preceding claims-based ASP.NET Web API implementation is the security token containing
the claims issued by an STS. In this section, I cover what a security token is and the different types of tokens at a high
level. Tokens and creating a custom STS are covered in depth in the upcoming chapters.

A security token is basically a set of claims. In the .NET Framework 4.5, a claim is represented by the
System.Security.Claims.Claim class, the properties of which are shown in Listing 5-18.

Listing 5-18.  Claim Properties

public string Type { get; }
public string Value { get; }
public string ValueType { get; }
public string Issuer { get; }
public string OriginalIssuer { get; }
public ClaimsIdentity Subject { get; internal set; }
public IDictionary<string, string> Properties { get; }
 

•	 Type property is a string, typically a URI. For example, the name claim type is
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name. A claim type can be one
of the well-known claim types defined in the ClaimTypes class, or it can be a custom URI as defined
by the issuing authority. In the preceding examples, the name claim’s type is the well-known
claim type ClaimTypes.Name. The department claim added by AuthenticationManager is of
custom type. I have used the URL http://badri/claims/department.

www.it-ebooks.info

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://badri/claims/department
http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

99

Name = Badri

Role = Developer

Role = Tester

CanDelete = True

Figure 5-4.  Security token

•	 Value property contains the actual value of the claim such as ‘Engineering’ for the department
claim. It is a string, so even a claim that is a number such as an age will also be a string—“32”
instead of 32.

•	 ValueType property, as the name suggests, is the type of the claim value, which will help in
deserializing complex types.

•	 Subject property is a ClaimsIdentity object that represents the subject of the claim—the
entity (typically the user) about which the claim has been issued.

•	 Issuer property has the name of the issuing authority and OriginalIssuer has the name of
the original issuing authority and holds importance in the case of a claim passing through
multiple issuers. Issuer is important from the point of view of asserting that the issuing
authority that has issued this claim is someone the RP application trusts.

The claims typically come in groups. For a bunch of claims to be sent over the network, they need to be serialized.
A security token is a container of a serialized set of claims. To ensure the claims stay secure—that is, not seen by
anyone other than the intended or tampered with while in transit—claims get digitally signed and encrypted.
Figure 5-4 shows an illustration of a token.

Token Formats
There are three standard token formats: Security Assertion Markup Language (SAML), Simple Web Token (SWT), and
JSON Web Token (JWT). Table 5-1 shows a comparison of these formats.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

100

Listing 5-19 shows a sample SAML token containing just one claim, a name claim. The token contains the
signature and the public key of the issuing authority as well, for the RP to validate the authenticity of the token.

Listing 5-19.  SAML Token

<saml:Assertion MajorVersion="1" MinorVersion="1"
 AssertionID="_05d9930e-a4d0-4678-bcc1-7b754223fb71"
 Issuer="PassiveSigninSTS" IssueInstant="2012-10-03T03:58:20.018Z"
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 <saml:Conditions NotBefore="2012-10-03T03:58:20.018Z" NotOnOrAfter="2012-10-03T04:58:20.018Z">
 <saml:AudienceRestrictionCondition>
 <saml:Audience>http://localhost:62177/</saml:Audience>
 </saml:AudienceRestrictionCondition>
 </saml:Conditions>
 <saml:AttributeStatement>
 <saml:Subject>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:bearer
 </saml:ConfirmationMethod>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Attribute AttributeName="name" AttributeNamespace="http://schemas.xmlsoap.org/ws/2005/05/
 identity/claims">
 <saml:AttributeValue>jqhuman</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignatureValue>G5GXu+D/zPRvTSPRA/Z04WjeD7UK28o...7v4afGo=</ds:SignatureValue>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <X509Data>
 <X509Certificate>MIIBrTCCAVugAwIBAgIQ2eYG/dM...kKjNV6A==</X509Certificate>
 </X509Data>
 </KeyInfo>
 </ds:Signature>
</saml:Assertion>
 

Table 5-1.  Token Formats Comparison

SAML SWT JWT

Representation XML HTML Form encoding JSON

Geared Toward SOAP REST REST

Out-of-the-Box WIF Support Yes No No

Protocols WS-Trust and
WS-Federation

OAuth 2.0 OAuth 2.0

Typical Carrier HTTP body or URL HTTP Auth header (Bearer) HTTP Auth header (Bearer)

Support for Signing Yes, asymmetric key -
X509 certificate

Yes, HMAC SHA-256 using
symmetric key

Yes, both symmetric and
asymmetric signing

Support for Encryption Yes No Yes

www.it-ebooks.info

http://localhost:62177/
http://schemas.xmlsoap.org/ws/2005/05/identity/claims
http://schemas.xmlsoap.org/ws/2005/05/identity/claims
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2000/09/xmldsig
http://www.it-ebooks.info/

Chapter 5 ■ Identity Management

101

The following sample SWT shows two role claims. Unlike SAML, which is XML, this is just a bunch of key–value
pairs that are form encoded. The RP that receives this token can validate the authenticity by comparing the value of
the HMACSHA256 key against the one it can generate using the shared key. We look at SWT in depth in Chapter 10.
 
Audience=http%3a%2f%2flocalhost%2fmyservice&ExpiresOn=1255913549&Issuer=https%3a%2f%2fmyservice.
accesscontrol.windows.net%2f&role=Admin%2cUser&&HMACSHA256=sT7Hr9z%2b3t1oDFLpq5GOToVsu6Dyxpq7hHsSAz
nmwnI%3d
 

The following sample JWT is basically JSON. In the sample, the first part is the header, followed by the payload
with claims. Although the token is shown in JSON format below for readability, the actual representation of a JWT
consists of three parts separated by a period (.). The first part is the base64-encoded header, the second part is the
base64-encoded payload, and the third part is the signature, which is the encoded header and the encoded payload
signed with the SHA-256 algorithm. We look at JWT in depth in Chapter 10.s
 
{"typ":"JWT", "alg":"HS256"}
{
 "aud":"https://my-server.com/relyingparty", "iss":"https://my-server.acs.windows.net/",
 "nbf":1336067338,
 "exp":1336070938,
 "nameid":"jqhuman", "identityprovider":"idp.com",
 "role": ["admin", "user"]
}

Summary
Authentication and authorization are the two important aspects of identity management. Authentication is
the process of discovering the identity of an entity and verifying the identity through validating the credentials.
Authorization is the process of determining whether an identity is allowed to perform a requested action.

Role-based security is the most commonly used security model in business or enterprise applications for access
control. Identity and principal are the two abstractions provided by the .NET Framework for implementing role-based
security. You can use the GenericIdentity and GenericPrincipal classes in the .NET Framework 4.5 for custom
scenarios. For Windows authentication, you can use the WindowsIdentity and WindowsPrincipal classes.

Compared to the traditional model in which a user presents the credentials directly to the application, in
the claims-based security model the user presents only the claims and not the credentials to the application. The
fundamental difference between role-based access control and claims-based access control is that for role-based
control a user must be assigned to a role to be authorized to perform an action, whereas for claims-based control a
user must have a claim with the correct value, as expected by the application, to be authorized. Claims-based access
control is elegant to write and easier to maintain.

Claims are issued to an application by an issuing authority in the form of a security token. A security token
basically is a set of claims signed and possibly encrypted for secure transport. There are three types of security tokens:
SAML, SWT, and JWT.

www.it-ebooks.info

https://my-server.com/relyingparty
https://my-server.acs.windows.net/
http://www.it-ebooks.info/

103

Chapter 6

Encryption and Signing

Encryption is the process of transforming data in plain text and making it unreadable to all except those who are
meant to read the data, with the goal of confidentiality. Signing, or more specifically digital signing, is the process by
which a digital signature is created to demonstrate the authenticity and integrity of data. A valid signature gives the
recipient the confidence that the data received is indeed from the correct sender and that the data is not tampered
with in any way during transit.

For example, let’s say I want to send a confidential message exclusively to Alice. I encrypt the message so that
only she can decrypt and read the data. Now I want to send a message to Bob. I sign the message because Bob is
concerned about the authenticity of data; that is, he wants to be sure the message is from me and not an impostor and
that the original message from me is not altered in transit.

Encryption and signing are not mutually exclusive. A message can be both encrypted and digitally signed. For
example, let’s say I want to send a confidential message to Charlie so that only he can read the message. I also want to
ensure that Charlie accepts the message only if it is from me and not an imposter. In this case, I encrypt the message
as well as sign it.

If a message is encrypted on one end of the communication channel, it is decrypted on the other end. If a
message is signed on one end of the channel, the signature is validated on the other end.

In this chapter, I show you how to manually encrypt and sign data using symmetric and asymmetric keys.
I also show you how Windows Identity Foundation (WIF) encrypts and signs tokens, to help you appreciate the
cryptographic heavy lifting WIF does for you. If you work outside the realm of WIF, as often is the case with the web
tokens used with REST, you need a solid understanding of the concepts of encryption and signing to build a secure
ASP.NET Web API.

Cryptography
Cryptography helps secure data in motion. It helps provide secure means of communication by preventing
unintended parties from viewing confidential data (encryption/decryption) and providing ways for the intended
receiving party to detect if the data has been tampered with in transit (signing/validation). Apart from the
confidentiality and integrity aspects, cryptography also helps in the process of authentication and nonrepudiation.

A cryptographic key, which is randomly generated data, is an important input to the cryptographic algorithms
in addition to the actual data that the algorithm is trying to secure. Depending on how the key is used, cryptographic
algorithms can be divided into two main areas.

1.	 Symmetric key or secret key cryptography that employs one key, the same key used at both
the sending and receiving ends.

2.	 Asymmetric key or public key cryptography that uses a pair of mathematically linked keys,
with one key used at the sending end and the other used at the receiving end.

The defining characteristic of symmetric key cryptography is that the same key is used at both ends, the sender
and receiver. A symmetric key is also called a secret key because this mechanism requires the key to be a secret shared

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

104

by only the sender and the receiver. In the case of symmetric key encryption, the key that is used to encrypt is used
to decrypt as well. Similarly, the key that is used to sign is used to validate the message. The symmetric-key-based
approach sounds more natural because we use a key to lock a door and use the same key to unlock the door. You
can use the RNGCryptoServiceProvider class of the .NET Framework to generate keys to be used with symmetric
algorithms.

For asymmetric cryptography there are two keys, a public and a private key. The keys are mathematically
linked. To encrypt a message, the public key of the receiver is used by the sender. The message thus encrypted can
be decrypted only with the private key of the receiver. To sign a message, the private key of the sender is used by the
sender. The message thus signed can be validated by the receiver using the public key of the sender. A private key
must never be shared, whereas a public key can be shared with anyone.

You can use the RNGCryptoServiceProvider class of the .NET Framework to generate the asymmetric keys as well.
Also, the public–private key pair from an X.509 digital certificate can be used for this purpose. A certificate is more than
a container for the keys. It is issued by a certificate authority (CA) and it ensures the key contained within it belongs to
the entity to which the certificate was issued; therefore, it is a means to prove one’s identity. This is an important aspect
of consideration for the nonrepudiation requirements. To repudiate is to deny. The origin of a message signed with
the private key of an X.509 certificate can be traced to the sender’s identity, satisfying nonrepudiation requirements.
Compared to this, a public–private key pair generated using RNGCryptoServiceProvider cannot be used for the
purpose of nonrepudiation.

Table 6-1 shows the comparison of symmetric and asymmetric key algorithms.

Table 6-1.  Symmetric vs. Asymmetric Keys

Factor Symmetric Key Algorithm Asymmetric Key Algorithm

Performance Much faster compared to asymmetric algorithms. Comparatively slower.

Data volume Can deal with large amount of data. Mathematical limitation in terms of the
volume of data that can be handled.

Key secrecy Key must be shared between the sender and the
receiver and both parties must safeguard the
key, which is generally harder and doubly risky
compared to only one party having to keep a secret.

You must rigorously safeguard your private
key but can freely distribute the same
public key to all your communication
partners. The safety of your key is not in
others’ hands.

Lifetime In practice, symmetric keys are rotated on a regular
basis. There is administrative and operational
overhead to replacing the old key with a new one,
communicating to the relevant parties about the
change, and having the communicating parties
adjust to the change.

Asymmetric keys are generally long-
lived. There is overhead to maintaining
asymmetric keys, but the keys generally
are not changed as frequently as
symmetric keys.

Susceptibility to
brute-forcing

Key size chosen determines the susceptibility, but
symmetric keys are comparatively more susceptible.

Range of possible values for an asymmetric
key is much larger compared to a symmetric
key, so an asymmetric key is less susceptible
to brute-force attacks.

Cost No external agency like a CA is involved and hence
there is no cost involved for acquiring keys needed
for the algorithms.

Although it is possible to generate the keys,
in practice asymmetric algorithms are used
with X.509 digital certificates. It does cost
money to acquire them from a CA as well as
to subsequently renew and manage them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

105

It is interesting to note that both symmetric and asymmetric keys can be used together, especially when the
symmetric key must be generated on the fly at the time communication is initiated. In such a case, one party can
generate a symmetric key, encrypt it using an asymmetric key encryption algorithm, and securely share it with the
other party. Once shared, further message exchanges can be secured by symmetric key algorithms.

Encrypting a Message Using Symmetric Keys
To illustrate the process of encryption using symmetric keys, let’s say I have to send a message that includes my credit
card details to Alice, a customer service representative, to make a payment. I don’t want anyone but Alice to read the
message because it includes sensitive data. To ensure confidentiality, I encrypt the message. However, before Alice
and I can start exchanging any encrypted messages, we must agree on two things.

1.	 The key to be used to encrypt and decrypt a message. Alice and I share the key, and the
same key is used to encrypt and decrypt; hence, it is a symmetric key.

2.	 The encryption algorithm to use. Because we use a symmetric key, a symmetric algorithm
must be used. The .NET Framework supports several algorithms out of the box, as shown
in Table 6-2.

Alice and I decide to use Rijndael with a block size of 128 bits and a key size of 256 bits, the default values of the
RijndaelManaged class. The following steps show how to implement the encryption.

1.	 Listing 6-1 shows the code to generate a random key of size 256 bits and an initialization
vector (IV) of size 128 bits using RNGCryptoServiceProvider. The IV is just a random
input with a fixed size, generally the same as the block size. The randomness of the IV
allows the same key to be used to encrypt the messages repeatedly, even the messages
with sequences of repeating bytes, preventing an attacker from inferring relationships
between segments of the encrypted message. For illustration purposes, the code in
Listing 6-1 shows the generation of the key and IV. In practice, the shared key is typically
generated and shared between the communicating parties out of band and not as part of
the message exchange.

Table 6-2.  Symmetric Encryption Classes Provided by the .NET Framework

Class Description

RC2CryptoServiceProvider RC2 is a block cipher designed by Ron Rivest in the late 1980s. This is a weak
cipher and must not be used.

DESCryptoServiceProvider Data Encryption Standard, from the 1970s, with a key size of 56 bits, is also
not suitable for today’s encryption needs.

TripleDESCryptoServiceProvider As the name indicates, this is DES run three times. Even by today’s
standards, this is a strong encryption.

RijndaelManaged Rijndael (pronounced rain-dahl) is the algorithm selected by the U.S.
National Institute of Standards and Technology (NIST) as the candidate for
the Advanced Encryption Standard (AES), the official replacement for DES
and eventually Triple DES. The .NET Framework also has an AesManaged
class, which is essentially the Rijndael algorithm with a block size of 128 bits,
and does not allow the feedback modes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ enCryption and Signing

106

Listing 6-1. EncryptionKey Generation

using (RijndaelManaged provider = new RijndaelManaged())
{
 byte[] initVector = new byte[provider.BlockSize / 8]; // Converting 128 bits to bytes
 byte[] key = new byte[provider.KeySize / 8]; // Converting 256 bits to bytes

 using (var rngProvider = new RNGCryptoServiceProvider())
 {
 rngProvider.GetBytes(initVector);
 rngProvider.GetBytes(key);
 }

 // Encryption code goes here - See Listing 6-2.
}

Caution T the RNGCryptoServiceProvider class provided by the .net Framework implements a cryptographic
random number generator (rng) and is the best fit to generate random keys for cryptography. never use System.Random
for this purpose. it could be faster but is not geared for the specialized job of key generation.

2. Listing 6-2 shows the code for encrypting my message to Alice. My plain text message
of “1234 5678 9012 3456 06/13” contains the credit card number and the expiry date.
My message is a string or text. I get the byte array representation of this string by calling
Encoding.UTF8.GetBytes() and pass the resulting byte array onto the Transform method.
The input to an encryption or a decryption function is an array of bytes and so is the output.

Listing 6-2. Shared Key or Symmetric Key Encryption

// Credit card data that I want to send Alice
string creditCard = "1234 5678 9012 3456 06/13";
byte[] clearBytes = Encoding.UTF8.GetBytes(creditCard);

byte[] foggyBytes = Transform(clearBytes,
 provider.CreateEncryptor(key, initVector));

3. The Transform method shown in Listing 6-3 is used for both encryption and decryption.
It encrypts or decrypts based on the cryptographic transformation object that is passed
in. For encryption, I pass the encryptor object returned by the CreateEncryptor method,
which is used to create a CryptoStream object, the contents of which are returned as a byte
array. This is the cipher text or the encrypted message.

Listing 6-3. Transform Method

private byte[] Transform(byte[] textBytes, ICryptoTransform transform)
{
 using (var buf = new MemoryStream())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

107

 {
 using (var stream = new CryptoStream(buf, transform,
 CryptoStreamMode.Write))
 {
 stream.Write(textBytes, 0, textBytes.Length);
 stream.FlushFinalBlock();
 return buf.ToArray();
 }
 }
}
 

4.	 Convert the cipher text to a base64-encoded string. This is necessary in scenarios like
sending cipher text as part of HTML, such as in a hidden field, a cookie, or in an HTTP
header. See Listing 6-4. The cipher text in base64 encoding that gets written to the console
is “naoJ1WaoyI8Ra0bviykBT23o5M0iEWhF56ojcJskQ/8=”. Of course, this output will not be
same as yours, if you run this code, because the key generated in the first step for me will
be different from yours.

Listing 6-4.  Sending the Cipher Text

// This is the string that gets sent to Alice
string encryptedData = Convert.ToBase64String(foggyBytes);
Console.WriteLine(encryptedData);
 

5.	 Finally, Listing 6-5 shows the code Alice runs to decrypt my message and extract the
credit card. Note that the same Transform method is used here as well. However, by
passing in the decryptor object created by CreateDecryptor, I instruct the method to
assume the input as cipher text and decrypt to clear text.

Listing 6-5.  Shared Key or Symmetric Key Decryption

var foggyBytes = Convert.FromBase64String(messageFromBadri);
 
Console.WriteLine(
 Encoding.UTF8.GetString(
 Transform(foggyBytes, provider.CreateDecryptor(key, initVector))));

Signing a Message Using Symmetric Keys
Now that we have seen encryption in action, let’s move on to digital signing. The objective of signing is to ensure
authenticity (the data received is from someone the receiver believes it is from) and integrity (the data is not tampered
with in transit).

Let’s say I have to send a message to Bob asking him to meet me in the town square. Bob is concerned about the
authenticity of the data. He wants to be sure the message is from me and not an impostor. In this example, I’m not
concerned with confidentiality because I’m not sending any confidential data. Sending plain text is acceptable to me.

As with encryption, Bob and I have a shared secret key. The key can be generated just as in the previous section.
However, only a key is needed and not an IV, as an IV is a requirement for encryption but not signing. I create a
hash-based code using the shared key and send it as my signature.

Hashing is the transformation of a string or textual data into a shorter fixed-length string that represents the
original string. I cover hashing in detail in Chapter 15, as a mechanism to secure data in REST. A hash-based message
authentication code (HMAC) can be used as a signature, which is the focus of this section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

108

In cryptography, a message authentication code (MAC) is calculated using a hash function in combination
with a secret key. It is used to verify both the data integrity and the authenticity of a message. If I create an HMAC for
the message I plan to send to Bob using a key, it results in a hash code. I’ll send the message along with this code
(my signature) to Bob. On receipt, Bob can also create the HMAC for the message using the key he has, which is of
course the same as mine. If the message is not tampered with in transit, the code Bob created and the one I sent will
exactly match. Also, because Bob and I share the key the only other person who could have created the same code
from the message has to be me. By comparing the code, Bob can ascertain both the authenticity and the integrity of
the message. Just like encryption, several hashing algorithms are supported by the .NET Framework to produce an
HMAC code (shown in Table 6-3).

Table 6-3.  Classes Provided by the .NET Framework for HMAC Creation

Class Description

HMACMD5 Uses the Message Digest Algorithm 5 (MD5) hash function. The output hash is
128 bits in length. The MD5 algorithm was designed by Ron Rivest in the early
1990s and is not a preferred option today.

HMACSHA1 Uses Security Hash Algorithm (SHA1) hash published in 1995. The output hash is
160 bits in length. Although most widely used, this is not a preferred option today.

HMACSHA256, HMACSHA384
and HMACSHA512

Use the functions SHA-256, SHA-384, and SHA-512 of the SHA-2 family. SHA-2 was
published in 2001. The output hash lengths are 256, 384, and 512 bits, respectively,
as the hash functions’ names indicate.

The following steps show how to implement signing and validation.

1.	 Similar to encryption, the participants (Bob and I) agree on the algorithm to be used
and the key. We decide to use the hashing algorithm SHA256. Listing 6-6 shows the code
to generate a 32-byte key. As with encryption, the generation code is shown here for
illustration purposes. In practice, it is created and shared out of band.

Listing 6-6.  Signing Key Generation

using (var provider = new RNGCryptoServiceProvider())
{
 byte[] secretKeyBytes = new byte[32];
 provider.GetBytes(secretKeyBytes);
 
 return Convert.ToBase64String(secretKeyBytes);
}
 

2.	 The message for which I need to create the HMAC signature is “Meet me in the town
square.” I use the secret key generated in the previous step to create an instance of
the HMACSHA256 class. I convert the text message into a byte array by calling
Encoding.UTF8.GetBytes and pass that on to the ComputeHash method of the HMACSHA256
object. The result of the method call is the signature, which is a byte array. See Listing 6-7.
It prints FI0rhihM5nVisyT6X8TrtifBbbl4xGx6wxm4m9MmdVs=, which is the
base64-encoded representation of the signature.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

109

Listing 6-7.  Symmetric Key Signing

byte[] dataToJoe = Encoding.UTF8.GetBytes("Meet me in the town square");
using (HMACSHA256 hmac = new HMACSHA256(secretKeyBytes))
{
 byte[] signatureBytes = hmac.ComputeHash(dataToJoe);
 
 string signature = Convert.ToBase64String(signatureBytes);
 Console.WriteLine(signature);
}
 

3.	 Now that I have the signature, I can send the message “Meet me in the town square” in
clear text and the corresponding signature to Bob. Bob knows the message is from me.
Thus, he knows the specific secret key to use because we have a common shared key.
He uses the key and creates the HMAC256 signature himself, corresponding to the message
that I have sent him. If the signature he creates matches the signature that I’ve sent along
with the message, Bob knows that the data has not been tampered with in transit.
Because only Bob and I know this shared secret key, he is convinced that the data is from me.
Of course, for this to work the shared key must remain a secret between Bob and me.

4.	 Finally comes the validation. Listing 6-8 shows the code that Bob can use to validate the
message and signature.

Listing 6-8.  Symmetric Key Signing Verification

string signatureOfBadri = "FI0rhihM5nVisyT6X8TrtifBbbl4xGx6wxm4m9MmdVs=";
byte[] dataFromBadri = Encoding.UTF8
 .GetBytes("Meet me in the town square");
 
using (HMACSHA256 hmac = new HMACSHA256(secretKeyBytesOfBadri))
{
 byte[] signatureBytes = hmac.ComputeHash(dataFromBadri);
 string computedSignature = Convert.ToBase64String(signatureBytes);
 
 if (computedSignature.Equals(signatureOfBadri,
 StringComparison.Ordinal))
 Console.WriteLine("Authentic");
}
 

Note■■   Simple Web Token (SWT), which you will see in Chapter 10, uses the same HMAC SHA256 hash that we are
using here to ensure authenticity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

110

Encrypting a Message Using Asymmetric Keys
In this section I show you how to perform encryption and signing through asymmetric keys (a public and a private key
pair) from an X.509 certificate. To illustrate the encryption process, I use the earlier scenario where I send credit card
data to Alice.

The easiest way to make a certificate is to use a tool like Makecert.exe. It generates the X.509 certificates
with a public and private key pair for testing purposes, but this is acceptable for illustration purposes. You can run
Makecert.exe from the Visual Studio command prompt under Visual Studio Tools in Visual Studio 2010 or the
Developer command prompt for Visual Studio 2012. You must launch the Visual Studio Command Prompt as an
administrator for Makecert to work. Once you are ready, you can run the tool with the command-line arguments
in Listing 6-9.

Listing 6-9.  Certificate Generation Through Makecert

makecert.exe -sr LocalMachine -ss My -a sha1 -n CN=Badri -sky exchange -pe
makecert.exe -sr LocalMachine -ss My -a sha1 -n CN=Alice -sky exchange -pe
 

The following steps show how to view the certificates generated by Makecert.exe.

1.	 Run the Microsoft Management Console by typing mmc in the run box.

2.	 Select File ➤ Add/Remove snap-in, followed by the Certificates snap-in on the left side
under Available snap-ins.

3.	 Click Add and subsequently select Computer account, local computer to see the
certificates on your computer.

Figure 6-1 shows the result after Makecert is run twice. Two certificates, Badri and Alice, are created, and both
have private keys. I have opted to use the SHA1 algorithm for these certificates, which is the default option and is
better than MD5, the only other option. By specifying “exchange” for the sky switch, as shown in Listing 6-9, I ensure
that the certificates can be used for both encryption and signing.

Figure 6-1.  MMC Certificates snap-in

www.it-ebooks.info

Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

111

Now that we’ve created the necessary certificates, we can encrypt the message containing the credit card data
using the new certificate. Because we are going to do asymmetric encryption and decryption, let’s use the RSA
algorithm, which is the algorithm for public-key cryptography. The class that implements this algorithm in the .NET
Framework is RSACryptoServiceProvider.

1.	 The X509Certificate2 class in the .NET Framework represents an X.509 certificate. I use
an extension method to the string to create an X509Certificate2 instance from the subject
name (see Listing 6-10). We locate a certificate in the certificate store using the subject
name. First create and open an X509Store object. Using the Certificates collection of
the store object, narrow down to the certificate you are looking for, using the subject name.
The final result will be an X509Certificate2 object.

Listing 6-10.  Get Certificate

static class CertificateHelper
{
 public static X509Certificate2 ToCertificate(
 this string subjectName,
 StoreName name = StoreName.My,
 StoreLocation location = StoreLocation.LocalMachine)
 {
 X509Store store = new X509Store(name, location);
 store.Open(OpenFlags.ReadOnly);
 
 try
 {
 var cert = store.Certificates.OfType<X509Certificate2>()
 .FirstOrDefault(c => c.SubjectName.Name.Equals(subjectName,

 StringComparison.OrdinalIgnoreCase));
 
 return (cert != null) ? new X509Certificate2(cert) : null;
 }
 finally
 {
 store.Certificates.OfType<X509Certificate2>().ToList().ForEach(c => c.Reset());
 store.Close();
 }
 }
}
 

2.	 Let’s go ahead and encrypt the data “1234 5678 9012 3456 06/13” just as we did for the
symmetric key. I’m encrypting the message to be read by Alice. It is important that I use
Alice’s public key. Alice could have given her public key to many, but her private key is a
secret and only Alice has it. She will use the private key to decrypt my message. By using
Alice’s public key, I’m making sure only Alice, who has the private key, can read the data
and not anyone else. This is the most important part of the asymmetric key encryption:
The sender uses the public key of the receiver’s certificate to encrypt and the receiver uses
the private key of their own certificate to decrypt. See Listing 6-11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

112

Listing 6-11.  Asymmetric Key Encryption

string dataToAlice = "1234 5678 9012 3456 06/13";
var cert = "CN=Alice".ToCertificate();
var provider = (RSACryptoServiceProvider)cert.PublicKey.Key; // Note the use of public key
 
byte[] cipherText = provider
 .Encrypt(Encoding.UTF8
 .GetBytes(dataToAlice), true);
 
Console.WriteLine(Convert.ToBase64String(cipherText));
 
// What gets sent to Alice is cipherText
 

3.	 Listing 6-12 shows the code Alice can use to decrypt the message and get the credit card
information. Alice uses the private key of her certificate.

Listing 6-12.  Asymmetric Key Decryption

// Alice receives cipherText here
 
// Alice decrypts the cipherText using her private key
var cert = "CN=Alice".ToCertificate();
var provider = (RSACryptoServiceProvider)cert.PrivateKey;
 
Console.WriteLine(
 Encoding.UTF8.GetString(
 provider.Decrypt(cipherText, true)));
 

I generated both certificates on my machine and hence I have the private key of both certificates. However,
practically speaking that will not be the case. I’ll have both certificates but the certificate with CN=Badri will have a
public key as well as the private key. The certificate with CN=Alice will have only the public key. It is the other way
around with Alice, as shown in Figure 6-2.

Badri’s machine Alice’s machine

CN=Badri CN=Alice CN=Alice CN=Badri
Private Key
and Public Key

Public Key
only

Public Key
only

Private Key
and Public Key

Figure 6-2.  Certificate and key distribution:sender and receiver machines

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

113

Note■■  I n Listing 6-11, I’m encrypting data using Alice’s public key and Alice uses her private key to decrypt, which
is the typical method. What if I have access to Alice’s private key and use the same to encrypt the data? Can Alice now
use her public key to decrypt? The answer is no. Regardless of the use of a public or a private key in asymmetric key
encryption, only a private key can be used for decryption. However, using a private key for encryption is not the right way.
The correct implementation of asymmetric key encryption uses the receiver’s public key for encryption at the sender’s
end and the receiver’s private key for decryption at the receiver’s end.

It is possible to encrypt and decrypt using asymmetric keys generated by the RSACryptoServiceProvider class
without employing an X.509 certificate. Unlike the previous section, where we generated two certificates along the
exact lines of how they must be used in real life, we will now generate just a key pair to keep things simple. Listing 6-13
shows the code to generate the keys and Listing 6-14 shows the encryption and decryption.

Listing 6-13.  RSACryptoServiceProvider Generating Private–Public Key Pair

string publicKey = String.Empty;
string privateKey = String.Empty;
 
using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
{
 publicKey = rsa.ToXmlString(false);
 privateKey = rsa.ToXmlString(true);
}
 

Caution■■   Keys generated through the ToXmlString() method are in plain text XML format, but you should
not store these in the file system for security reasons. A key container must be used instead.
System.Security.Cryptography.CspParameters can help you use the key container to store the keys.

Listing 6-14.  Encryption Using the Keys Generated by RSACryptoServiceProvider

byte[] encryptedData = null;
byte[] secretData = Encoding.UTF8.GetBytes("1234 5678 9012 3456 06/13");
 
// Sender's end
using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
{
 rsa.FromXmlString(publicKey); // encrypt using public key
 encryptedData = rsa.Encrypt(secretData, true);
}
 
// Receiver's end
using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
{
 rsa.FromXmlString(privateKey); // decrypt using private key
 Console.WriteLine(Encoding.UTF8.GetString(rsa.Decrypt(encryptedData, true)));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

114

Signing a Message Using Asymmetric Keys
Now that we have seen how encryption/decryption is done using asymmetric keys, let’s move on to signing. The main
difference with respect to key usage is that I sign the data using my private key. The receiver, who in our example is
Bob, uses the public key of my certificate to verify the signature. I pass SHA1 while signing the data because that is the
algorithm I chose when I created the certificate using Makecert. Listing 6-15 shows the code to sign the message using
my private key.

Listing 6-15.  Asymmetric Key Signing

byte[] dataFromBadri = Encoding.UTF8.GetBytes("Meet me in the town square");
var cert = "CN=Badri".ToCertificate();
 
var provider = (RSACryptoServiceProvider)cert.PrivateKey; // Note the use of private key here
byte[] signatureOfBadri = provider.SignData(dataFromBadri,
 CryptoConfig.MapNameToOID("SHA1"));
 
Console.WriteLine(Convert.ToBase64String(signatureOfBadri));
 
// What gets sent to Bob are the data and signature
// dataFromBadri and signatureOfBadri
 

Listing 6-16 shows the code Bob can use to verify the authenticity of the data. Bob knows the data is from me,
so he will use the certificate with the subject name of CN=Badri. He will have only the public key for my certificate,
and that is what he will use to verify the data and signature.

Listing 6-16.  Asymmetric Key Signing Verification

// Bob receives my data and signature here
// dataFromBadri and signatureOfBadri
 
// Bob validates the signature using my public key
var cert = "CN=Badri".ToCertificate();
var provider = (RSACryptoServiceProvider)cert.PublicKey.Key; // Note the use of public key here
 
if (provider.VerifyData(dataFromBadri,
 CryptoConfig.MapNameToOID("SHA1"),
 signatureOfBadri))
 Console.WriteLine("Verified");
 

Here is a quick recap of how the keys were used in our scenario:

For encryption, I used the public key of the certificate CN=Alice.•	

For decryption, Alice used the private key of the certificate CN=Alice.•	

For signing, I used the private key of the certificate CN=Badri.•	

For validating the signature, Bob used the public key of the certificate CN=Badri.•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

115

NONREPUDIATION

Take the scenario of Bob receiving the message from me and validating my signature using the public key of my
certificate. This scenario involves only two individuals, but the scenario holds for organizations as well.

If two organizations use the real X.509 certificates issued by a CA (as against the usage of test certificates
generated by Makecert), once the receiver validates the message using the public key of the sender’s certificate
it will not be possible for the sender to deny that the message did not originate from their organization.
The message had to have been signed using the private key of the sender, which must have been securely
kept by the sender. For this reason, signatures created using X.509 certificates help with nonrepudiation aspects.

It is possible to sign using the asymmetric keys generated by the class RSACryptoServiceProvider (see Listing 6-17).
Key generation logic is shown in Listing 6-13 in the preceding section.

Listing 6-17.  Signing Using the Keys Generated by RSACryptoServiceProvider

byte[] signature = null;
byte[] secretData = Encoding.UTF8.GetBytes("Mum's the word");
 
// Sender's end
using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
{
 rsa.FromXmlString(privateKey); // sign using private key
 signature = rsa.SignData(secretData, "SHA256");
}
 
// Receiver's end
using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
{
 rsa.FromXmlString(publicKey); // validate using public key
 Console.Write(rsa.VerifyData(secretData, "SHA256", signature)); // Outputs True, if
 signature is valid
}

Token Encryption and Signing
In this chapter so far, we have been encrypting and signing data just as a precursor to understanding how a token
issuer encrypts and signs a security token.

My role in the preceding examples is the same as that of a token issuer, because I encrypt and sign messages
before sending them out. Alice and Bob, the cryptographic stereotypes, represent the relying parties because they
decrypt and validate messages sent by me. The message exchanged in the preceding examples is analogous to a token
that is exchanged between a token issuer and the relying party (RP).

Typically, a token issuer is a Security Token Service (STS) endpoint, as specified by the WS-Trust protocol. It is
possible to create our own custom STS by using WIF, which we look at in depth in Chapter 7.

Comparison to Cryptographic Handling in WIF
If you leverage the classes provided by WIF, the nuts and bolts of encryption and signing are taken care for you.
All you need to do is specify an encrypting and a signing credential. Figure 6-3 illustrates a scenario that uses
X.509 encrypting and signing credentials; in other words, X.509 certificates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ enCryption and Signing

116

In the next sections I provide a quick overview of how WIF helps us accomplish the same encryption and signing
that we have done manually so far. If you are not familiar with the classes and properties in the following sections,
don’t worry. I cover the creation of a custom STS in detail in Chapter 7. In the scenario of a custom STS implemented
through WIF, data is the token that needs to be encrypted and signed. The roles of Alice, Bob, and I are all played
by WIF. WIF knows what needs to be done based on where it runs—the sender side or the receiver side. The sender
is the STS and the receiver is the RP application.

Token Encryption
STS: WIF uses the RP application’s certificate. This is analogous to me using Alice’s certificate to encrypt. In
practice, there can be more than one relying RP using the same STS. In our previous encryption example, where
communication is only between Alice and me, I have no dilemma in choosing the right certificate because the only
certificate available to me is that of Alice, in addition to my own. However, in the case of an STS there can be multiple
RP applications. So, an STS must be designed to be intelligent enough to pick the right certificate for encryption.

In the GetScope method overridden in the STS class, based on the RequestSecurityToken object passed in, STS
can pick up the certificate corresponding to the RP that has issued the token request and set the certificate in the
EncryptingCredentials property of the scope. WIF does the rest by encrypting the token using the public key of the
certificate assigned into EncryptingCredentials.

RP Application: WIF decrypts the token using the private key of the RP application’s certificate. This is similar to
what Alice did to read the encrypted data I sent her in the scenario earlier in this chapter. WIF picks up the certificate
based on the <serviceCertificate> element of the <system.serviceModel> section of the application’s config file, as
shown in Listing 6-18.

Listing 6-18. Application Config ServiceCertificate

<serviceCertificate>
 <certificateReference x509FindType="FindBySubjectName"
 findValue="RP"
 storeLocation="LocalMachine" storeName="My" />
</serviceCertificate>

Security Token Service

CN=MySTS CN=RP
Private Key
and Public Key

Public Key
only

Relying Party

CN=RP CN=MySTS
Public Key
only

Private Key
and Public Key

X509EncryptingCredentials
X509SigningCredentials

Token

Encrypted with the
public key of CN=RP and
signed with the private
key of CN=MySTS

Figure 6-3. Certificate and key distribution: STS and RP application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Encryption and Signing

117

Token Signing
STS: STS uses its own certificate, just like I used my own certificate when I had to sign the data to be sent to Bob.
Unlike the encryption certificate, there is no scope for any confusion here. The certificate to be used is the STS
certificate, which is not going to change on a request basis. The certificate to be used is the same for all the requests.
Hence it is set in the constructor of SecurityTokenServiceConfiguration.

By the time the GetScope() method is called, the scope object’s signing credentials will already be set with the
certificate passed into the SecurityTokenServiceConfiguration constructor. WIF jumps in and signs the token with
the private key of the STS certificate. This is similar to what I did while signing the data to be sent to Bob.

Relying Party Application: WIF validates the signature using the public key of the STS. WIF picks up the
certificate based on <trustedIssuers> in the config file (shown in Listing 6-19) and uses the public key to validate
the signature. This is similar to how Bob validated my signature using the public key of my certificate.

Listing 6-19.  Web.config Trusted Issuers

<issuerNameRegistry type="System.IdentityModel.Tokens.ConfigurationBasedIssuerNameRegistry,
 System.IdentityModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <trustedIssuers>
 <add thumbprint="A6155968B7BBB9C35421B19FA9E14D4DCEF3FC5A"

name="http://mysts" />
 </trustedIssuers>
</issuerNameRegistry>
 

Similar to how Alice and I exchanged public keys but kept a private key secret, the STS certificate with the private
key will be kept only on the server running the STS and the certificate with only the public key published to the RP
applications. Similarly, an RP application keeps its own certificate with the private key secret and publishes only the
public key to STS.

Summary
Encryption and signing are two important facets of cryptography. Encryption is the process of transforming data in
plain text and making it unreadable to all except those who are meant to read the data, with the goal of confidentiality.
Signing or, more specifically, digital signing is the process by which a digital signature is created to demonstrate the
authenticity of data to the recipients.

Based on how the keys are used, encryption and signing can be performed using symmetric keys or asymmetric
keys. In the former case, the same key is shared between the sender and the receiver. In the case of the latter, there are
two mathematically linked keys: a public key and a private key. A private key is kept secret and a public key is shared
with all.

If you leverage the classes provided by WIF, the nuts and bolts of encryption and signing of the security tokens are
taken care of automatically for you. All you need to do is to specify an encrypting and a signing credential. WIF does
the cryptographic heavy lifting by encrypting and signing the tokens on the STS side and decrypting and validating the
tokens on the RP application side.

By understanding the underlying concepts of encryption and signing, you can confidently work outside the realm
of WIF when needed, such as when dealing with REST-friendly web tokens.

www.it-ebooks.info

http://mysts/
http://www.it-ebooks.info/

119

Chapter 7

Custom STS through WIF

A Security Token Service (STS) is a web service that issues security tokens. The concept of STS is defined in a web
service specification called WS-Trust, which specifies how a security token must be requested and issued. Creating an
STS from scratch involves a fair bit of work. Windows Identity Foundation (WIF), a framework from Microsoft, does all
the work for you by abstracting away the nuts and bolts of WS-Trust and presenting a nice API surface for you to work
on as you build an STS.

In a typical enterprise, the business drivers to build a custom STS are very few, if any. Because STS is a pure
security infrastructure, a typical business tends to focus its IT resources on providing IT solutions of business value
rather than using those resources to build a production-grade STS.

From a technology standpoint, the mechanisms defined by WS-Trust are SOAP based. The REST world, where
ASP.NET Web API lives, cannot relate to these mechanisms. Even so, it is worthwhile to cover the subjects of STS
and WS-Trust in this book on ASP.NET Web API. In an enterprise that has invested in an STS-based infrastructure,
leveraging the existing investment could come as a technology mandate for the REST-style architectures involving
ASP.NET Web API. A good example for such an STS-based infrastructure is Active Directory Federation Services
(AD FS) 2.0. AD FS 2.0 is part of Windows Server and is an STS that uses Active Directory as the identity provider.
AD FS 2.0 issues Security Assertion Markup Language (SAML) tokens.

In this chapter, I show you how to create a custom STS purely from the perspective of enhancing your
understanding of STS and the WS-Trust specification that defines it. Creating a production-grade STS is outside the
scope of this book. In Chapter 9, where I cover SAML tokens as ownership factors for security, I use the same custom
STS to mint SAML tokens for ASP.NET Web API to consume.

However, if you intend to create a production-grade STS, before you roll your own implementation, review
Thinktecture.IdentityServer v2 (https://github.com/thinktecture/Thinktecture.IdentityServer.v2).
IdentityServer is a lightweight STS built with .NET 4.5, MVC 4, Web API, and WCF. It supports multiple protocols
(both WS-Trust, which I cover in this chapter, and OAuth 2.0, which I cover in Chapters 11, 12, and 13). IdentityServer
can mint tokens of different formats (SAML 1.1/2.0, JWT) and integrates with ASP.NET membership, roles, and profile
out-of-the-box.

Starting with the .NET Framework 4.5, WIF has been fully integrated into the .NET Framework. Hence, the term
WIF as used here simply represents the .NET Framework classes related to WS-Trust. The content and code in this
book target the .NET Framework 4.5.

WS-Trust
There are a variety of web service specifications built on top of the XML and SOAP standards to address different
areas such as security, reliable messaging, and transactions. These specifications are collectively referred to as
WS-* (WS-STAR).

WS-Security, one such specification, is an extension to SOAP for securing web services. WS-Security describes
how to attach signature and encryption headers as well as security tokens (including X.509 certificates and Kerberos
tickets) to SOAP messages for assuring message authenticity, integrity, and confidentiality. WS-Trust, another
WS-* specification, defines extensions that build on WS-Security to provide a framework for requesting, issuing,

www.it-ebooks.info

https://github.com/thinktecture/Thinktecture.IdentityServer.v2
http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

120

and validating security tokens. The core of this protocol is the STS and the protocol to request a token by means of
the request-response message pairs of a Request Security Token (RST) and a Request Security Token Response
(RSTR). The format of the security token issued by an STS is typically a SAML token.

Trust Brokering
Direct authentication is a common security pattern in which a client presents its credentials to a service directly.
There is a trust relationship between the client and the service. Building a trust relationship between a client and
a service is done out of band. For example, before using a service, a user registers with the entity hosting the service
and uses the credentials created in this process to authenticate from the client application. Direct authentication is a
simple pattern, but when the number of services a client has to interact with increases, the overall process gets really
complex. Out-of-band registration has to happen for each service and credentials must be maintained as well.

Brokered authentication, on the other hand, is a pattern that introduces an entity that centralizes
authentication. Even if no trust is established between the client and the service, a trust relationship is established
between the client and the central authentication broker and the service and the broker.

The STS forms the basis of trust brokering, as stated in the WS-Trust specification. A client trusts the STS.
It provides the credentials to STS and gets a token. The relying party application trusts the STS as well. If a client
presents a token from the STS it trusts, the relying party application honors the token as long as it is satisfied the
token is valid. STS is what makes the brokered authentication possible and is an important piece in the WS-Trust
machinery. Figure 7-1 illustrates brokered authentication achieved through STS, as specified by WS-Trust.

Security
Token

Service

Client

Relying
Party App

Trust Relationship
Relying Party App
trusts STS

RST

RSTR

UserName
Token

SAML
Token

SAML
Token

Figure 7-1.  WS-Trust

The Request–Response Pair of RST and RSTR
WS-Trust specifies a framework for requesting and returning security tokens using RST and RSTR messages. RST
provides the means for requesting a security token from an STS. RSTR contains the requested token and other related
information. For an RST, there is an RSTR and there are no intermediate steps in trust message exchanges. The RST
message body contains exactly one <RequestSecurityToken> element and the RSTR message contains exactly one
<RequestSecurityTokenResponse> element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

121

Listing 7-1 has a simple RST with some of the elements edited to improve readability. It is XML, as you would
expect in any WS-* protocol. The XML namespace of http://schemas.xmlsoap.org/ws/2005/02/trust indicates
WS-Trust 1.2. The key elements of the RST shown in Listing 7-1 are the following:

1.	 <RequestType>, which in this example is Issue, denoting the request for STS to issue
a new token.

2.	 <UsernameToken> containing the user credentials.

3.	 <AppliesTo> indicating the relying party application to which the token needs to be issued.

Listing 7-1.  Request for Security Token (RST)

<t:RequestSecurityToken
 xmlns:t=http://schemas.xmlsoap.org/ws/2005/02/trust
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Address>http://my-server.com/</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <t:Base>
 <wsse:UsernameToken wsu:Id="SecurityToken-369f98c0a-234c-1568-abc1-f96512eb2628">
 <wsse:Username>jqhuman</wsse:Username>
 <wsse:Password Type="...#PasswordDigest">AC2jkCf6Tu456bufThXKlF=</wsse:Password>
 <wsse:Nonce>5kMy6oS6yF98vweJPkeofs==</wsse:Nonce>
 <wsu:Created>2012-10-10T11:03:10Z</wsu:Created>
 </wsse:UsernameToken>
 </t:Base>
 <t:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Issue</t:RequestType>
</t:RequestSecurityToken>
 

On receiving a request for a security token, STS validates the credentials in the <UsernameToken> element and
creates a token, which is a SAML token in this case, and sends back an RSTR. Listing 7-2 shows a typical response,
edited for brevity. Some of the key elements of RSTR are as follows:

1.	 <Lifetime> element with the token creation timestamp and the time the token will expire.

2.	 <RequestedSecurityToken> element in the response contains the SAML token, which
in turn contains the claims and the STS signature. For the sake of readability, the token
shown in Listing 7-2 is not encrypted.

3.	 <TokenType> is the type of the token, which is SAML 1.1.

4.	 <RequestType>, which is Issue, the same as the request.

5.	 <KeyType>, which is the symmetric key.

6.	 <RequestProofToken> element containing the proof key, which the client uses to
demonstrate to the relying party application that the client is the rightful owner of the
token. In other words, it is used to prove to the relying party application that the client
directly received the token from the issuing authority and that it did not steal it or find it
somewhere! This element warrants a bit more discussion and is covered in depth in the
following subsection.

www.it-ebooks.info

http://schemas.xmlsoap.org/ws/2005/02/trust
http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://schemas.xmlsoap.org/ws/2004/09/policy
http://www.w3.org/2005/08/addressing
http://my-server.com/
http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

122

Listing 7-2.  Request for Security Token Response (RSTR)

<t:RequestSecurityTokenResponse
 xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <t:Lifetime>
 <wsu:Created>2012-10-10T09:39:49.400Z</wsu:Created>
 <wsu:Expires>2012-10-10T10:39:49.400Z</wsu:Expires>
 </t:Lifetime>
 <t:RequestedSecurityToken>
 <!-- SAML Token -->
 <saml:Assertion MajorVersion="1" MinorVersion="1"
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 <saml:AttributeStatement>
 <saml:Subject>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>
 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
 </saml:ConfirmationMethod>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <trust:BinarySecret
 xmlns:trust="�http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 AcNrXK+wW9Q0pynB/5uYHprtafX2S2ELbNimapbiygY=
 </trust:BinarySecret>
 </KeyInfo>
 </saml:SubjectConfirmation>
 </saml:Subject>
 </saml:AttributeStatement>
 <!-- Rest of SAML Token contents -->
 </saml:Assertion>
 </t:RequestedSecurityToken>
 <t:RequestedProofToken>
 <t:BinarySecret>AcNrXK+wW9Q0pynB/5uYHprtafX2S2ELbNimapbiygY=</t:BinarySecret>
 </t:RequestedProofToken>
 <t:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</t:TokenType>
 <t:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Issue</t:RequestType>
 <t:KeyType>http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey</t:KeyType>
</t:RequestSecurityTokenResponse> 

Proof of Possession
STS issues a token to a client after authenticating its credentials, for the client to present this token to a relying party
application. Apart from the aspects of authenticity, integrity, and confidentiality, there is the aspect of ownership.
A proof key, or more formally a proof-of-possession key, is used to demonstrate the token ownership.

Ownership is about ensuring the token presented to the relying party application by a client is indeed issued to
the client by the STS. In other words, the client presenting the token is the rightful owner of that token. Based on the
ownership concern, the tokens can be classified into two categories: bearer tokens and holder-of-key tokens.

www.it-ebooks.info

http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://www.w3.org/2000/09/xmldsig%23
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey
http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

123

A bearer token is like cash: finders, keepers. A holder-of-the-key token contains cryptographic material for the
entity to which it was issued to prove the ownership of the token. This is more like a credit card, with your name and
signature.

To demonstrate ownership, I use the same techniques of signing and encryption that I used in Chapter 6;
however, in this chapter the way I show you how to use the proof key to accomplish the objective is different and the
process is a bit more involved.

When an RST is sent by a client to an STS, one of the elements in the request is the <KeyType>. It is not shown in
Listing 7-1 to keep the example request simple. Also, it is an optional element. There are three possible values for
this element.

1.	 Public key: An asymmetric public key is used as the proof key. The proof key can be from
an X.509 certificate or can be an ephemeral RSA public key that is just generated on the fly.

2.	 Symmetric key: A symmetric key is used as the proof key. This is the default option when
the key type is not specified in the request.

3.	 Bearer: There is no proof key. A bearer token contains no proof key for the obvious reason
that the entity bearing the token is considered the owner and there is no need to prove
ownership. A client asks for this token when it does not need to demonstrate proof of
possession to the relying party application.

In the case of public and symmetric key types, the SAML token returned by the STS has the subject confirmation
type of holder-of-key, as shown in bold in Listing 7-2. For the bearer key type, the SAML token has the subject
confirmation of bearer. Let us now see how a symmetric proof key is used to establish the token ownership. The
following steps show the process of checking the proof of possession of the token.

1.	 STS, at the time of token creation for an RST with <KeyType> of symmetric key, generates a
symmetric key as the proof key. It is possible for the client to specify a <KeySize> (in bits)
in RST indicating the size of the symmetric key that would need to be generated. If not
specified, the STS generates a 256-bit symmetric key.

2.	 STS stuffs the generated key into the SAML token and encrypts the token with the public
key of the relying party. Because the private key of the relying party is not available to the
client, the proof key inside the SAML is unknown to the client.

3.	 STS signs the SAML token with its private key.

4.	 STS includes the proof key in the RSTR in the <RequestedProofToken> element, as shown
in Listing 7-2 in bold. As you can see, the proof key inside the SAML token and the one
in the <RequestedProofToken> element are exactly the same. It is very important to
understand that the client must not be able to get the key inside the token. For this reason
the SAML token requested using the symmetric key type must always be encrypted
with the public key of the relying party.

5.	 The client receives the encrypted and signed SAML token and the <RequestedProofToken>
element. It creates a new message including the SAML token for the relying party
application, signs this message with the key from <RequestedProofToken>, and sends it.
The proof key is never sent in the message to the relying party. Only the message with the
encrypted and signed SAML token and the signature the client has created using the proof
key in <RequestedProofToken> are sent.

6.	 The relying party application receives the message and retrieves the SAML token out of the
message payload.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

124

7.	 The relying party application validates the STS signature in the SAML token using the
public key of STS. Once satisfied with the integrity and authenticity of the SAML token,
it decrypts the token using its own private key because STS has encrypted the token with
the corresponding public key. If there are no failures up to this point, the token is deemed
authentic. It has not been tampered with by anyone in the middle and the token contents
are confidential.

8.	 The relying party application picks up the proof key from inside the SAML token.

9.	 The relying party application computes the signature of the message from the client using
this proof key retrieved from the SAML token.

10.	 The signature thus created is compared to the signature sent by the client. If they match, it
proves to the relying party application that the client application that presented the token
is the owner of the token.

Figure 7-2 illustrates this process of ownership verification.

In the case of asymmetric keys, the steps involved are similar to the preceding steps. The main difference,
however, is that the proof key used in the case of the asymmetric keys is the public key provided to STS by the client.
Only the client has access to the corresponding private key. STS creates the SAML token, embedding the public key
instead of the symmetric key that we saw in the preceding scenario, and sends the token in the RSTR. The client
creates a message to the relying party with this token and signs it with the private key, whose corresponding public
key is the proof token. The relying party application, on receiving the SAML token, can directly validate the client
signature using the public key embedded in the SAML token as the proof key. Because the proof key inside the SAML
token is a public key, encryption of the SAML token is not mandatory.

Client
ApplicationSTS

Relying Party
Application

RST
KeyType: Symmetric

KeySize:256

RSTR
Proof key: AcNrXK=

1. Decrypts token and gets the embedded proof
key AcNrXK=.

2. Computes the signature for the message from
client using the embedded proof key.

3. If the signature computed is XY7ARp, client is the
owner of the token!

Proof key:
AcNrXK=

Encrypted
Token

Proof key:
AcNrXK=

Encrypted
Token

Signature: XY7ARp

Figure 7-2.  Proof key used for confirming token ownership

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

125

WS-Federation is another WS-* protocol. It extends WS-Trust to support federation of identity across trust
domains, typically the organizational boundaries. WS-Federation enables a common model for performing
federated identity operations for both web services (SOAP clients) and web applications (browsers). SOAP clients
are typically capable of performing the complex cryptographic operations that WS-Trust requires. Such a client
is defined as an active client, whereas one that is not capable, such as a web browser, is known as a
passive client.

WS-Federation describes how to use the mechanisms available in HTTP (GET, POST, redirects, query strings,
cookies, etc.) for requesting and obtaining tokens, sending them to relying parties, and in general handling sign-in,
sign-out, and similar operations from a web browser. This is what WS-Federation is well known for. The term
WS-Federation has become associated with the passive case through common usage by developers. In this book,
I focus on the active case of a client application using RST and RSTR of WS-Trust to directly request and obtain a
token from an STS and present the SAML token thus obtained to the relying party application of ASP.NET Web API.

Building a Custom STS
In this section, I demonstrate how to build a custom STS using the WIF classes. Our STS will be a simple console
application. At a high level, building a custom STS entails subclassing the abstract class System.IdentityModel.
SecurityTokenService provided by WIF and hosting it using ServiceHost provided by Windows Communication
Foundation (WCF). The following steps show how to build the STS.

1.	 Create a subclass of System.IdentityModel.SecurityTokenService, with a name
of MySecurityTokenService. In this subclass, you will override the GetScope() and
GetOutputClaimsIdentity() methods for the custom STS to issue tokens (shown in the
next steps in detail). To renew, cancel, or validate tokens, appropriate methods must be
overridden and implemented. However, we focus only on the token issuance part.

2.	 As shown in Listing 7-3, use the Makecert tool to generate two X.509 certificates to be used
with the custom STS: one for STS and one for the relying party application, named MySTS
and RP, respectively.

Listing 7-3.  Certificate Generation through Makecert

 makecert.exe -sr LocalMachine -ss My -a sha1 -n CN=MySTS -sky exchange -pe
makecert.exe -sr LocalMachine -ss My -a sha1 -n CN=RP -sky exchange -pe
 

We saw in Chapter 6 how these two certificates will be used by STS and the relying party application to
encrypt/decrypt and sign/validate the token. STS encrypts the token using the public key of CN=RP and signs the
token using the private key of CN=MySTS. The RP decrypts the token using the private key of CN=RP and validates the
token signature using the public key of CN=MySTS. Because I run the STS, the client, and the relying party application
on the same machine, both the certificates CN=MySTS and CN=RP will have the private key on my machine. In a
production scenario, a certificate with a private key will be strictly in possession of an entity to which the certificate
has been issued.

WS-FEDERATION

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

126

3.	 In the MySecurityTokenService class, override the GetScope method, as shown in
Listing 7-4. GetScope() returns the configuration for RST, represented by the Scope class.
Following are the steps.

Listing 7-4.  GetScope Method

public class MySecurityTokenService : SecurityTokenService
{
 public MySecurityTokenService(SecurityTokenServiceConfiguration configuration)

 : base(configuration) { }
  
 protected override Scope GetScope(ClaimsPrincipal principal, RequestSecurityToken request)
 {
 if (request.AppliesTo == null)
 throw new InvalidRequestException("Specify RP in AppliesTo");
 
 if (!request.AppliesTo.Uri.Equals(new Uri("http://my-server.com")))
 {
 Console.WriteLine("Invalid Relying party Address ");
 throw new InvalidRequestException("Invalid Relying party Address ");
 }
 
 var encryptingCredentials = new X509EncryptingCredentials("CN=RP".ToCertificate());
 
 Scope scope = new Sc�ope(

request.AppliesTo.Uri.AbsoluteUri,
 SecurityTokenServiceConfiguration.SigningCredentials,
 encryptingCredentials);
 
 return scope;
 }
 
 // GetOutputClaimsIdentity goes here
} 

a.	 First, I verify AppliesTo against a hard-coded URI of the relying party application.
In the case of this example, there is only one relying party and the URI of the same is
hard-coded in the check.

b.	 I create an instance of X509EncryptingCredentials using the certificate CN=RP
and set that in the scope. Because we have only one RP, I’m simply creating a new
instance. If there are multiple RP applications, based on AppliesTo, I have to pick
the right certificate for encrypting the token. Note the usage of the extension method
ToCertificate that I created in Chapter 6.

c.	 I also pass in signing credentials to the Scope constructor, but I take it from the
configuration. This credential, which is for signing, is that of the STS itself and does
not change for each request. Hence, I take it from the config.

4.	 In the MySecurityTokenService class, override the GetOutputClaimsIdentity method,
as shown in Listing 7-5. GetOutputClaimsIdentity() creates and returns a new
ClaimsIdentity. In this case, I use the name claim from the incoming principal and add
an additional e-mail claim.

www.it-ebooks.info

http://my-server.com/
http://www.it-ebooks.info/

Chapter 7 ■ Custom sts through WIF

127

Listing 7-5. GetOutputClaimsIdentity Method

protected override ClaimsIdentity GetOutputClaimsIdentity(ClaimsPrincipal principal,
 RequestSecurityToken request, Scope scope)

{
 string userName = principal.Identity.Name;
 string authenticationType = principal.Identity.AuthenticationType;

 var outputIdentity = new ClaimsIdentity(authenticationType);

Claim nameClaim = new Claim(System.IdentityModel.Claims.ClaimTypes.Name, userName);
 Claim emailClaim = new Claim(ClaimTypes.Email, userName + "@somewhere.com");

 outputIdentity.AddClaim(nameClaim);
 outputIdentity.AddClaim(emailClaim);

 return outputIdentity;
}

5. Now, the question you might have is where this incoming principal gets the identity
and the name claim. As shown in Listing 7-6, CustomUsernameTokenHandler, which
is a subclass of UserNameSecurityTokenHandler, performs that function of validating
the credentials in the incoming UserNameSecurityToken and creating an identity
corresponding to the credentials. In this example, I simply check that the user name and
password are the same for the credentials to be considered authentic. Create a subclass
and override the CanValidateToken method, also shown in Listing 7-6.

Listing 7-6. CustomUsernameTokenHandler

public class CustomUsernameTokenHandler : UserNameSecurityTokenHandler
{
 public override bool CanValidateToken { get { return true; } }

 public override ReadOnlyCollection<ClaimsIdentity> ValidateToken(SecurityToken token)
 {
 UserNameSecurityToken userNameToken = token as UserNameSecurityToken;

 if (!userNameToken.UserName.Equals(userNameToken.Password))
 throw new SecurityTokenValidationException("Invalid credentials");

 var claim = new Claim(System.IdentityModel.Claims.ClaimTypes.Name,
userNameToken.UserName);

 var identity = new ClaimsIdentity(new Claim[] { claim }, "NameToken");

 return new ReadOnlyCollection<ClaimsIdentity>(
 new ClaimsIdentity[]
 {
 identity
 });
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

128

6.	 I use WCF ServiceHost to host our custom STS. Let us first look at the app.config file
(see Listing 7-7). There is nothing special here. It’s a configuration any WCF service will
have. The key point to note is the service contract implementation. The implementation
typically is provided by the developer, but in this example I use the System.ServiceModel.
Security.WSTrustServiceContract object provided by the .NET Framework 4.5. For the
endpoint contract, I use the IWSTrust12SyncContract interface provided by the .NET
Framework 4.5. Message security is configured to be used with the credential type of
the username. For service credentials, the CN=MySTS certificate that was generated
was specified.

Listing 7-7.  App.config File of the Custom STS Console Application

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="System.ServiceModel.Security.WSTrustServiceContract"
 behaviorConfiguration="myStsBehavior">
 <endpoint address=""
 contract="System.ServiceModel.Security.IWSTrust13SyncContract"
 binding="ws2007HttpBinding"
 bindingConfiguration="myStsBinding"/>
 </service>
 </services>
 <bindings>
 <ws2007HttpBinding>
 <binding name="myStsBinding">
 <security mode="Message">
 <message clientCredentialType="UserName"
 establishSecurityContext="false"
 negotiateServiceCredential="true"/>
 </security>
 </binding>
 </ws2007HttpBinding>
 </bindings>
 <behaviors>
 <serviceBehaviors>
 <behavior name="myStsBehavior">
 <serviceCredentials>
 <serviceCertificate findValue="CN=MySTS" storeLocation="LocalMachine"
 storeName="My" x509FindType="FindBySubjectDistinguishedName"/>
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

129

7.	 For the purpose of hosting, I use the WSTrustServiceHost class in the
System.ServiceModel.Security namespace. The WSTrustServiceHost constructor
expects an instance of SecurityTokenServiceConfiguration. The SecurityTokenService
property of the configuration is where the type of our custom STS is set. Just like any
self-hosted WCF, once the Open() method of the host instance is called, the service is ready
to accept requests. In our case, the RST requests through the IWSTrust12SyncContract
endpoint. Listing 7-8 shows the Main method, the entry point of the console application
we have been building hosting the STS. The logic of the code in the Main method can be
broken down into the following steps.

Listing 7-8.  Main Method

class Program
{
 static void Main(string[] args)
 {
 SigningCredentials signingCreds = new X509SigningCredentials("CN=MySTS".ToCertificate());
 
 SecurityTokenServiceConfiguration config =

 new SecurityTokenServiceConfiguration("http://MySTS", signingCreds);
 
 config.SecurityTokenHandlers.AddOrReplace(new CustomUsernameTokenHandler());
 config.SecurityTokenService = typeof(MySecurityTokenService);
 
 // Create the WS-Trust service host with our STS configuration
 var host = new WSTrustServiceHost(config, new Uri("http://localhost:6000/MySTS"));
 
 try
 {
 host.Open();
 Console.WriteLine("STS is ready to issue tokens... Press ENTER to shutdown");
 Console.ReadLine();
 host.Close();
 }
 finally
 {
 if (host.State != CommunicationState.Faulted)
 host.Close();
 else
 host.Abort();
 }
 }
}
 
a.	 Create an object of type SecurityTokenServiceConfiguration by passing

the signing credentials created using the STS certificate CN=MySTS into the
SecurityTokenServiceConfiguration constructor. What is passed gets set as the
signing credential in every Scope object returned by the GetScope method of our
custom STS.

www.it-ebooks.info

http://mysts/
http://localhost:6000/MySTS
http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

130

b.	 Add the CustomUsernameTokenHandler to the security token handler collection of the
config object. Next, set the SecurityTokenService property of the config object to the
type of our custom STS. All the individual pieces created thus far are brought together
in the Main method.

c.	 Finally, create a host instance passing this config object and call Open(). STS is now
ready to issue tokens!

Figure 7-3 shows the classes that are involved in the creation of the custom STS. MySecurityTokenService and
CustomUsernameTokenHandler are the classes we created by subclassing the WIF classes. Other classes are used as is
from WIF.

Requesting a Token from a Custom STS
In the soapy world of WCF, an endpoint configured to use ws2007FederationHttpBinding can make use of our
custom STS in a seamless way. Almost solely through the configuration and a few supporting classes, a WCF service
can send metadata to a client, at the time of client proxy generation, instructing it how to go about getting the token
from the STS it trusts. While adding the service reference to this WCF service, the client config file is updated with all
the necessary information. But we live in a world outside of that!

Fear not, it is very easy to talk to our STS through some standard C# code and get it to issue a token. The following
steps show how to complete this task.

1.	 Create WS2007HttpBinding with message security. Of course, transport security can be
used, but it involves HTTPS and hence more complexity in terms of the setup. I just use
message security using user name client credentials, as shown in Listing 7-9.

Listing 7-9.  Binding with Message Security

private static string GetToken()
{
 var binding = new WS2007HttpBinding(SecurityMode.Message);
 

WSTrustServiceContract

IWSTrust12SyncContract

WSTrustServiceHost

SecurityTokenService UserNameSecurityTokenHandler

MySecurityTokenService CustomUsernameTokenHandler

SecurityTokenServiceConfiguration

Figure 7-3.  Custom STS classes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

131

 binding.Security.Message.ClientCredentialType = MessageCredentialType.UserName;
 binding.Security.Message.NegotiateServiceCredential = true;
 binding.Security.Message.EstablishSecurityContext = false;
 
 // Rest of the code is covered in the following steps
  
}
 

2.	 Create an endpoint address with that of STS. Note that I use a certificate generated
through Makecert, and I give a name that is not in line with the domain name of the STS
address. So, I have to explicitly specify the DNS name to match the subject name of the STS
certificate, as shown in Listing 7-10.

Listing 7-10.  Endpoint Creation

var address = new EndpointAddress(new Uri(@"http://localhost:6000/MySTS"),
 new DnsEndpointIdentity("MySTS"));

3.	 Using the binding and the endpoint address, create a WSTrustChannelFactory instance
and set the user credentials here, as shown in Listing 7-11.

Listing 7-11.  Channel Factory Creation

WSTrustChannelFactory factory = new WSTrustChannelFactory(binding, address);
factory.TrustVersion = TrustVersion.WSTrust13;
 
factory.Credentials.ServiceCertificate
 .Authentication.CertificateValidationMode = X509CertificateValidationMode.None;
 
factory.Credentials.ServiceCertificate.Authentication.RevocationMode =
X509RevocationMode.NoCheck;
factory.Credentials.UserName.UserName = "jqhuman";
factory.Credentials.UserName.Password = "jqhuman"; // got to be same as user name in our example
 

4.	 As shown in Listing 7-12, request the factory to create a channel for us and call the Issue
method on the channel, passing in the RST. That returns our SAML token.

Listing 7-12.  Request for Token

WSTrustChannel channel = (WSTrustChannel)factory.CreateChannel();
 
var request = new RequestSecurityToken(System.IdentityModel.Protocols.WSTrust.RequestTypes.Issue)
{
 AppliesTo = new EndpointReference("http://my-server.com")
};
 
RequestSecurityTokenResponse response = null;
var token = channel.Issue(request, out response) as GenericXmlSecurityToken;
 
return token.TokenXml.OuterXml;
 

www.it-ebooks.info

http://localhost:6000/MySTS
http://my-server.com/
http://www.it-ebooks.info/

Chapter 7 ■ Custom STS through WIF

132

The token thus returned is a SAML token. It is just XML in the form of a string and can be used with any .NET
Framework application, including ASP.NET Web API. Unfortunately, the token is all encrypted and hardly pleasing to
our eyes, but that is okay. We look at how to extract the claims out of this encrypted blob in Chapter 9, when we use
this SAML token with ASP.NET Web API.

Note■■   It is possible for the client application to retrieve the proof token using code like this:
response.RequestedProofToken.ProtectedKey.GetKeyBytes(). We use the proof key to validate token ownership
in Chapter 9.

Summary
There are a variety of web service specifications built on top of the XML and SOAP standards that are collectively
referred to as WS-*. WS-Security, one such specification, is an extension to SOAP for securing web services. WS-Trust,
another WS-* specification, defines extensions that are built on WS-Security to provide a framework for requesting,
issuing, and validating security tokens. The core of this protocol is the STS and the protocols to request a token by
means of the request–response message pairs of RST and RSTR.

Creating an STS from scratch involves a fair bit of work. WIF, a framework from Microsoft, does all the work for
you by abstracting away the nuts and bolts of WS-Trust and provides classes for you to help with the creation of STS.
There are two main steps in the creation of STS using WIF classes:

1.	 Create a subclass of System.IdentityModel.SecurityTokenService, overriding the
GetScope() and GetOutputClaimsIdentity() methods.

2.	 Host the STS with the .NET Framework System.ServiceModel.Security.
WSTrustServiceContract class as the service contract implementation and the interface
of IWSTrust12SyncContract as the endpoint contract.

I demonstrated STS creation in this chapter to help you understand STS and the WS-Trust specification. I use the
STS I created here in Chapter 9, where we look at consuming SAML tokens from ASP.NET Web API. This is the case with
organizations that have already invested in an STS-based infrastructure such as AD FS 2.0, where leveraging such an
existing infrastructure will be a technology mandate for even the REST-style architectures involving ASP.NET Web API.

www.it-ebooks.info

http://www.it-ebooks.info/

133

Chapter 8

Knowledge Factors

In Chapter 5, I covered one of the key and fundamental aspects of security: authentication. Authentication is the
process of discovering the identity of a user and verifying the same through validating the user-supplied credentials
against an authority. The credential can be a knowledge factor based on what a user knows, such as a password, or an
ownership factor based on what a user owns, such as a security token, or an inherence factor based on what the user
is, such as fingerprints. The focus of this chapter is on the knowledge factor.

RESTful services, such as the ones created using ASP.NET Web API, have a unique consideration regarding the
design of the authentication mechanism. In web applications, authentication happens when a user starts using the
application. During the session that is subsequently established, the user is not authenticated again. One of the REST
constraints—the statelessness constraint that we saw in Chapter 2—prohibits any client state data on the server. This
means authentication needs to happen in every service call for RESTful services.

With the direct authentication pattern, where a client trusts a service and hence presents the credentials directly
to the service, the credential such as a password (or a hash based on the password) is sent in every request. In this
area, HTTP authentication schemes hold sway. Request for Comments (RFC) 2617, “HTTP Authentication: Basic
and Digest Access Authentication,” provides the specification for the HTTP’s authentication framework, the original
Basic Access Authentication scheme, and a scheme based on cryptographic hashes referred to as Digest Access
Authentication. The basic authentication scheme is based on the model that the client must authenticate itself with a
user ID and a password. Unlike basic authentication, in digest authentication password verification is done through a
digest or a hash created from the password. I cover both basic and digest authentication in depth in this chapter.

In the case of the brokered authentication pattern where a broker such as an STS that we saw in Chapter 7 issues
a token to a client application, the token is sent in every request. In this area, the security tokens hold sway. We looked
at the three major formats—Security Assertion Markup Language (SAML), Simple Web Token (SWT), and JSON Web
Token (JWT)—in Chapter 5. I cover SAML in depth in Chapter 9 and web tokens in Chapter 10. In this chapter, we
look at Windows authentication, a scheme that uses the Microsoft technology stack of IIS and Internet Explorer to
authenticate a user’s Windows account credentials against Active Directory (AD) using Kerberos/NTLM protocols.

Basic Authentication
Basic authentication is a part of the HTTP specification. As the name indicates, it is a basic or simple scheme and
works as follows.

1.	 The client asks for a resource in the server.

2.	 If the resource requires the client to be authenticated, the server sends back a
401 - Unauthorized status code in the response and the response header
WWW-Authenticate: Basic. This response header can also contain a realm, which is a
string that uniquely identifies an area within the server for which the server needs a valid
credential to successfully process the request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

134

3.	 The client now sends the authorization header Authorization: Basic
YmFkcmk6U2VjcmV0U2F1Y2U= that contains the credentials. The authorization
request header value is just a base64-encoded string of the user ID and password
separated by a colon in between and is not encrypted in any way.

4.	 If the credentials are valid, the server sends back the response and a 200 - OK status code,
as illustrated in Figure 8-1.

Implementing Basic Authentication in ASP.NET Web API
As you start implementing basic authentication, you might wonder where to implement the logic to return the HTTP
status codes, response headers, and the actual authentication logic. As we have seen in Chapter 3, there are some
options available. Most notably, you can write a filter, which might be a custom authorization filter, or you can write
a message handler.

We have also seen in Chapter 3 that filters, in contrast to message handlers, run much later in the ASP.NET Web
API pipeline. Because basic authentication establishes identity, it is a good practice to establish identity early in the
pipeline so that requests are authenticated and bad or malicious requests get rejected as soon as possible.

A message handler runs for every request and a filter can be used selectively on required action methods. If your
web API requires authentication for only a few action methods, then a filter makes more sense. However, in most
cases a web API enforces authentication for most, if not all, requests. For these cases, it is better to use a message
handler.

In this chapter, I use a message handler to perform the authentication. We authenticate only when the
credentials are supplied in the Authorization request header. The output of the authentication process is that
Thread.CurrentPrincipal is set to a ClaimsPrincipal instance with an authenticated ClaimsIdentity. We will
use the out-of-box Authorize filter to decorate the action methods for which we would like to force authentication.

When an action method with the Authorize filter is called without setting the Authorization header in the
request, the message handler will not set Thread.CurrentPrincipal and hence the Authorize filter will return a
401 - Unauthorized response. The message handler has to do a little bit of clean up as well, because the filter does
not set the WWW-Authenticate response header. So, our message handler has to look for the 401 status and add the
response header, indicating the basic scheme to the client. With this design in place, let’s start coding the message
handler. I show you a template in Listing 8-1.

Client
Server

(ASP.NET Web API)

GET /api/employees HTTP/1.1

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic

GET /api/employees HTTP/1.1
Authorization: Basic YmFkcmk6U2VjcmV0U2F1Y2U=

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

[{"Department":"Enforcement","Id":"123","Name":"John Q Law"}",
{"Department":“Revenue","Id":“456","Name":"Jane Q Public"}]

Base64(“user id : password”)

Figure 8-1.  Basic authentication

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

135

Listing 8-1.  Basic Authentication Message Handler

public class AuthenticationHandler : DelegatingHandler
{
 private const string SCHEME = "Basic";
 
 protected async override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,

CancellationToken cancellationToken)
 {
 try
 {
 // Perform request processing here
 
 var response = await base.SendAsync(request, cancellationToken);
 
 // Perform response processing here
 
 return response;
 }
 catch (Exception)
 {
 // Perform error processing here
 }
 }
}
 

We now add code to the three appropriate places in the preceding listing to handle the request, response,
and error.

1.	 Request processing: Retrieve the user ID and password from the HTTP Authorization
header and perform the authentication, as shown in Listing 8-2. Following are the steps:

Listing 8-2.  Request Processing

var headers = request.Headers;
 
if (headers.Authorization != null && SCHEME.Equals(headers.Authorization.Scheme))
{
 Encoding encoding = Encoding.GetEncoding("iso-8859-1");
 
 string credentials = encoding.GetString(Convert.FromBase64String(

headers.Authorization.Parameter));
 string[] parts = credentials.Split(':');
 string userId = parts[0].Trim();
 string password = parts[1].Trim();
 
 // TODO - Do authentication of userId and password against your credentials store here
 if (true)
 {
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, userId),
 new Claim(ClaimTypes.AuthenticationMethod, AuthenticationMethods.Password)
 };
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

136

 var principal = new ClaimsPrincipal(
 �new[] { new ClaimsIdentity(claims, SCHEME) });

 Thread.CurrentPrincipal = principal;

 if (HttpContext.Current != null)
 HttpContext.Current.User = principal;
 }
}

a.	 Get the payload of the HTTP Authorization request header, if the header is present.

b.	 Split the payload by semicolon and take the trimmed first part as the user ID and the
trimmed second part as the password.

c.	 Perform the actual authentication. I skip this part in Listing 8-2 for the sake of brevity.
Here is where you will authenticate the credentials against an authority such as a
membership store.

d.	 Gather the claims, create a principal, and set it in Thread.CurrentPrincipal.
If you web-host, you must also set the principal in HttpContext.Current.User. 

2.	 Response processing: Check if the HTTP status code is 401 Unauthorized; if so, add
the corresponding WWW-Authenticate header, as shown in Listing 8-3. Per the HTTP
specification, when a 401 status code is sent back to the client, the response must include
the WWW-Authenticate header specifying the schemes the server supports for the client to
authenticate itself. We accomplish the same as part of this step.

Listing 8-3.  Response Processing

if (response.StatusCode == HttpStatusCode.Unauthorized)
{
 response.Headers.WwwAuthenticate.Add(
 new AuthenticationHeaderValue(SCHEME));
}
 

3.	 Error processing: If there is any exception in the message handler flow, set the status code
to 401 Unauthorized and set the WWW-Authenticate header, just as in the previous step,
and return the response short-circuiting the pipeline. See Listing 8-4.

Listing 8-4.  Error Processing

var response = request.CreateResponse(HttpStatusCode.Unauthorized);
response.Headers.WwwAuthenticate.Add(new AuthenticationHeaderValue(SCHEME));
 
return response; 

Note■■   Using ClaimsIdentity is not mandatory to implement basic authentication, but it is highly recommended
from a cleaner design point of view. Using ClaimsAuthenticationManager to add additional claims and using
ClaimsAuthorizationManager for access control are covered in Chapter 5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge FaCtors

137

The preceding code is a great example for illustrating the power of message handlers. The HTTP status code
can be set to 401 Unauthorized by any component in the pipeline, including the Authorize filter. By registering
AuthenticationHandler as the first handler to execute after HttpServer, we get the opportunity to inspect the
response as late as possible and add the necessary WWW-Authenticate header(s).

To demonstrate the capability of a message handler to completely stop the pipeline processing, you can discard
whatever response has been created thus far and send a new response. I’m catching the exception and starting a new
response with the 401 Unauthorized status code. Of course, I set the WWW-Authenticate response header here as
well, to comply with the HTTP specification. Starting a new response need not happen only inside the catch block.
It can be done any time while processing the request or the response, depending on the need.

Finally, AuthenticationHandler has to be registered in the WebApiConfig file under the App_Start folder, as
shown in Listing 8-5. The handler is registered as an all-route handler, which makes more sense for a handler that
deals with authentication because authentication is typically a common aspect for all the routes.

Listing 8-5. Delegating Handler Registration

public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.MessageHandlers.Add(new AuthenticationHandler());
 }
}

Caution  It is important to understand the sequence in which delegating handlers run in your application.
the sequence is based on how you configure the handlers in global.asax.cs. It is typical for the handler that deals with
authentication to run immediately after HttpServer, because this is where identity is established. hence, this handler
must be the first handler, even if you have to register multiple handlers in your application.

With this, we now have the infrastructure in place to mandate that only authenticated users can make specific
requests. Of course, if the need is to enforce authenticated users for all requests, it can be easily done in the
handler itself.

Because we decided to enforce selectively, we will use the out-of-the-box Authorize filter, as shown in
Listing 8-6. We use the filter without specifying any roles. Thus, it will make sure only that the identity is an
authenticated identity. The Authorize filter can be at the controller level as well. Another point to note is that it
is possible to subclass the Authorize filter and add more functionality, as covered in Chapter 3.

Listing 8-6. Authorize Filter

public class EmployeesController : ApiController
{
 [Authorize]
 public Employee Get(int id)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

138

 {
 return new Employee()
 {
 Id = id,
 Name = "John Q Human"
 };
 }
 
 [Authorize]
 public Employee Post(Employee human)
 {
 human.Id = 12345;
 return human;
 }
} 

Testing Basic Authentication
We can write a simple C# program to test an ASP.NET Web API implementing basic authentication. We just need
to prepare a base64-encoded string of user ID and password separated by a colon and put in the Authorize request
header before making the request to the web API, as shown in Listing 8-7. We use System.Net.Http.HttpClient
in this example.

Listing 8-7.  Testing Basic Authentication Through a C# Client

class Program
{
 static void Main(string[] args)
 {
 // Testing Basic Authentication
 using (HttpClient client = new HttpClient())
 {
 string creds = String.Format("{0}:{1}", "badri", "badri");
 byte[] bytes = Encoding.ASCII.GetBytes(creds);
 var header = new AuthenticationHeaderValue("Basic", Convert.ToBase64String(bytes));
 client.DefaultRequestHeaders.Authorization = header;
 
 var postData = new List<KeyValuePair<string, string>>();
 postData.Add(new KeyValuePair<string, string>("Name", "John Q Human"));
 
 HttpContent content = new FormUrlEncodedContent(postData);
 
 string response = String.Empty;
 var responseMessage = client.PostAsync("http://localhost:29724/api/employees/12345", content)
 .Result;
  
 if(responseMessage.IsSuccessStatusCode)
 response = responseMessage.Content.ReadAsStringAsync().Result;
 }
 }
}
 

www.it-ebooks.info

http://localhost:29724/api/employees/12345
http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

139

I’m passing the user credentials in that listing. If you know beforehand that the service supports basic
authentication, the credentials can be passed proactively. Or the credentials can be sent to the service reactively,
based on the supported schemes specified in the WWW-Authenticate header in the 401 Unauthorized response.
Because basic authentication is an HTTP standard, the web browsers know how to package the Authorize header and
put it in the request on receipt of 401 Unauthorized. When a browser such as Internet Explorer makes a request to our
web API, it first gets a 401 response with WWW-Authenticate: Basic header.

Nobody knows HTTP better than a web browser! The web browser now knows that it has to send the credentials
in the HTTP request header using the basic authentication scheme. First, the web browser pops up a dialog box, as
shown in Figure 8-2.

Figure 8-2.  Browser dialog box for basic authentication

Next, the web browser gets the credentials, packages the same in the correct format, and sends it to the web API.
Because I don’t use HTTPS in my example, the web browser warns that the user name and password are about to be
sent in an insecure manner.

The WWW-Authenticate header does not contain a realm and Internet Explorer is showing null in its place.
If I press ahead and enter the credentials and click OK, it submits the credentials and our message handler gets the
credentials in the format expected. Without writing a single line of code, we can use the browser as the test harness.

Merits and Demerits of Basic Authentication
The biggest advantage of basic authentication is its simplicity. It is probably the easiest, most lightweight way to
secure ASP.NET Web API. It requires nothing special. There is no need for hashing, encryption, or anything complex.
Basic authentication requires just the base64-encoded value to be put into the standard HTTP request header.

Another advantage of basic authentication is that it is a standard HTTP scheme. The HTTP standard goes a long
way in reaching out to devices and clients in any kind of platform you can imagine.

On the flip side, it is too simple for most of the production scenarios. First and foremost, it will require transport
security to make sure the credentials transported are not exposed to those with malicious intentions. This means the
client consuming the service must be capable of communicating using HTTPS. Although complexity in the message
is reduced with this scheme, complexity in the transport is increased.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

140

Fortunately, HTTPS is a standard. Clients that are capable of dealing with complexity in the transport through
some underlying helping mechanism, but are not capable of dealing with cryptographic things like hashing,
encrypting, and signing can themselves leverage this scheme.

The greatest disadvantage of basic authentication is that the credentials are cached by the browser until you close
the browser. If you make a request to a URI for which you are already authenticated, the browser sends the credentials
in the Authorize header, making it susceptible to cross-site request forgery (CSRF) attacks. Read the CSRF section of
Chapter 15 for more details.

Caution■■  D o not use basic authentication without SSL/TLS. HTTPS is a must for this scheme, without which anyone
can sniff the traffic and get the credentials.

Digest Authentication
Digest authentication is part of the HTTP specification, just like basic authentication. Unlike basic authentication,
digest authentication is comparatively safer to use with plain HTTP. One important point to note about digest
authentication is that the actual password is not sent to the server. Only an MD5 hash or a digest is sent.

Technology choice is all about trade-offs. There is no such thing as a free lunch! Digest authentication shifts
the transport complexity to the message. Unlike basic authentication, digest authentication is more complex and
needs support from the client as well as the human end users to make the scheme work efficiently. The client needs
to increment a nonce counter for every request to prevent replay attacks. That means the client needs to be tracking
the requests made. Also, the client needs to have the capability to create MD5 hashes. Finally, the whole scheme’s
effectiveness banks on the strength of the password chosen by the human user.

The Nuts and Bolts
Digest authentication is slightly complicated. In the following steps, I show you the digest authentication process.
This will prepare you for the details you need to understand to implement digest authentication, which can be quite
overwhelming for most of us!

1.	 Server responds with a 401 Unauthorized response on finding that the credentials are
invalid or missing, as shown in Listing 8-8.

Listing 8-8.  Unauthorized Response

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="RealmOfBadri",

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", qop="auth"
 

2.	 In the WWW-Authenticate header, the server indicates the scheme involved, which is
the digest scheme, and sends a randomly generated number called a nonce. A nonce is
a number used once. It is not exactly use and throw. The same nonce gets passed along
in subsequent requests until the nonce expires. At that time, the server sends back a 401
response along with a fresh nonce. The expiration time for a nonce is set to prevent replay
attacks. However, there is a possibility that a malicious user could obtain and send the nonce
within the expiration time. For example, if the expiration time is one minute, a malicious
user could send the nonce within that minute and the server will accept the nonce.
Fortunately, there are other mechanisms in place to prevent those attacks. The main point
is that a nonce with a definite lifetime is better than a nonce that is valid forever. For the
purposes of this example, assume the nonce is dcd98b7102dd2f0e8b11d0f600bfb0c093.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

141

3.	 The other parameter sent in addition to the nonce is a Quality of Protection (QOP) value.
I have mentioned previously that a hash or a digest is sent to the server. QOP is basically
the recipe for cooking the hash. It determines how other parameters are combined
and hashed to get the final digest value. I limit the discussion to "auth", which denotes
authentication only. The other value is "auth-int", denoting authentication with integrity
protection.

4.	 With a QOP value of "auth", a client nonce cnonce and a client nonce counter nc comes
into the picture. Just like the server nonce, which is sent by the server to the client, the
cnonce is a nonce generated by the client and sent to the server. The nc is the counter
that typically starts off with 00000001. The next request from the same client will have the
same server nonce and client nonce, but now the nc will be 00000002. It need not always
increment by 1, but it has to be greater than the previous nc.

5.	 The client, on receiving the WWW-Authenticate header, knows based on the QOP value
how it must create the hash. Because it is "auth" in our case, it generates a cnonce, say
0a4f113b. For the first time, it uses an nc of 00000001. The hash is computed through the
following steps, for QOP of "auth". The hash values in this illustration are all truncated
for brevity.

a.	 Compute the MD5 hash of username:realm:password. Example: MD5 hash of
the string jqhuman:RealmOfBadri:abracadabra. Let's call it HA1 and say it is
aa71f01f351.

b.	 Compute the MD5 hash of method:uri. Example: MD5 hash of the string
GET:/api/employees. Let's call it HA2 and say it is 939e7552ac.

c.	 Compute the MD5 hash of HA1:nonce:nc:cnonce:qop:HA2. Say, a hash of aa71f
01f351:dcd98b7102dd2f0e8b11d0f600bfb0c093:0a4f113b:auth:939e7552ac is
6629fae49393a05397450978507c4ef1.

6.	 The final MD5 hash or the digest calculated in Step 5c is sent by the client in the response
field of the authorization header, as shown in Listing 8-9.

Listing 8-9.  Digest Header

Authorization: Digest username="jqhuman", realm="RealmOfBadri",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", uri="/api/employees", qop=auth,
nc=00000001, cnonce="0a4f113b", response="6629fae49393a05397450978507c4ef1"
 

7.	 The server receives all these values and gets the user name from the request header value.
It pulls up the password for this user name from the credentials store. The server then
proceeds to cook up the MD5 digest by itself, exactly along the same lines of how the
client created it, using the same exact ingredients or the values through the same exact
well-known recipe. If the client has put in the right password or, in other words, used the
authentic credentials, the digest cooked up and sent by the client must exactly match the
digest the server has just cooked up. If the incoming digest and generated digest are the
same, the user is deemed an authentic user. That is the essence of digest authentication, as
illustrated in Figure 8-3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

142

Caution■■   Basic authentication absolutely needs transport security. Digest authentication does not need transport
security—mostly! Here is a word of caution. Although the password is not sent at all, with only a digest being sent, the
user name does get sent as plain text in the request header, as you can see in Listing 8-9. For the scenarios where a
malicious user knowing the user name is half the battle lost or worse, digest authentication over plain HTTP might not
be appropriate.

Security Defenses
Digest authentication is designed to survive in the open wilderness without HTTPS protection. For this reason,
digest authentication protected services operating on HTTP are good targets for man-in-the-middle (MITM) attacks.
MITM is a form of active eavesdropping in which the attacker holds two independent connections with the victims
and relays messages between them, making them believe they are talking directly to each other. The attacker in such
a case can pass the message from one victim to another as is, tamper with it to his liking, or completely replace the
original message with his own and completely control the exchange of messages.

Client
Server

(ASP.NET Web API)

GET /api/employees HTTP/1.1

HTTP/1.0 401 Unauthorized
WWW-Authenticate: Digest realm=“RealmOfBadri",
qop="auth",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093"

GET /api/employees HTTP/1.1
Authorization: Digest username=“john", realm=" RealmOfBadri",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", uri="
/api/employees", qop=auth, nc=00000001cnonce="0a4f113b…",
response="6629fae49393a05397450978507c4ef1"

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

[{"Department":"Enforcement","Id":"123","Name":"John Q Law"}",
{"Department":“Revenue","Id":“456","Name":"Jane Q Public"}]

GET /api/employees HTTP/1.1
Authorization: Digest username=“john", realm=" RealmOfBadri",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", uri="
/api/employees", qop=auth, nc=00000002, cnonce="0a4f113b…",
response="819d62c5167ae6f34160617522ebe9de"

[{"Department":"Enforcement","Id":"123","Name":"John Q Law"}",
{"Department":“Revenue","Id":“456","Name":"Jane Q Public"}]

Transaction#1

Transaction#2

Transaction#3

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

Figure 8-3.  Digest authentication

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

143

To counteract the MITM threat, several checks are built into the digest authentication scheme. On receiving the
authorization header shown in Listing 8-9, the server runs through the following checks.

1.	 The first and the most basic validation is checking if the nonce is something the server
generated in the recent past by looking at the nonce store the server maintains.

2.	 If the nonce exists in the store, it checks the freshness of the nonce against the expiration
date stored in the nonce store against the nonce. If the nonce has expired, the server
immediately sends back a 401 and a fresh nonce for the client to restart the digest
authentication process once again.

3.	 If the nonce is fresh, the server gets the nc that it received last time corresponding to this
server nonce, which is also stored in the nonce store against the server nonce. If the nc
in this request is lesser or equal to the value it has on record, the request is rejected
with a 401.

4.	 If not, the server retrieves the password for the user (jqhuman, in this case) from some
place such as a database and computes the MD5 hash by following the three steps we saw
in the preceding section.

5.	 If the client has sent the right password, the MD5 hash the server has just calculated will
exactly match the hash sent by the client in the response field. If there is any difference, the
hashes will not match and the server rejects the request again with a 401.

Let’s say Mallory, the cryptographic stereotype for a malicious user, gets the digest header from Listing 8-9.
The options Mallory has and the corresponding defense the digest mechanism has are listed here.

1.	 The first and foremost option is for Mallory to replay the old request. If the server nonce
expiration time is up, the server will reject the request and send a fresh nonce. Mallory
cannot use the new nonce to create a valid request, because she does not know the
password.

2.	 Before expiry, Mallory must use a client counter that is greater than the current one. It
is easier to add one and come up with a new one, but then this value is part of the MD5
digest. So, without knowing the password, the hash cannot be calculated correctly and the
server will reject the request.

3.	 Mallory can mount a chosen plain text attack by presenting the client a server nonce of
her liking to make the cryptanalysis easier, but the client nonce is randomly generated by
the client and hence it allows the client to vary the input to the hashing process in a way
not determined by the attacker. Thus, the purpose of the client nonce and the counter is to
prevent replay and chosen plain text attacks.

4.	 The final option Mallory has is to use a brute force attack; that is, to do exactly what the
server does, which is to compute the MD5 hash by following the three steps. Of course, the
password is not available but by using one password after another, Mallory can compute
the hash and compare it with the value in the response field of the header to guess the
password. First, Mallory tries all the individual alphabets and then combinations. If
the hash matches for any combination, that is the password. This technique is called a
brute-force attack. A dictionary can also be used to guess passwords because most of the
time human beings prefer words or a sequence of them for their passwords. Passwords
are stronger, of course, if users use a combination of upper and lower case, numbers,
and special characters. A password of apple can be easily cracked compared to
P0larbe@RinDFr!dg3. Even so, a determined hacker with resources can guess the
password. To be exact, the password is the weakest link. Thus, digest authentication
is not infallible, but it’s a better alternative than basic authentication over HTTP.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

144

Note■■   From a pure statelessness perspective, digest authentication’s suitability to be used with REST-based services
is left to the designer’s REST affinity. First of all, the service must keep track of the server nonce it generates. Worse, it
must keep track of the nonce counter last used by the client to prevent replay attacks.

Implementing Digest Authentication
Similar to basic authentication, we will use message handler AuthenticationHandler to implement digest
authentication with ASP.NET Web API because it runs earlier in the ASP.NET Web API pipeline and is an appropriate
place to implement authentication logic. It is a good practice to have authentication logic running as early as possible
in the pipeline to reject the bad requests as soon as possible. There are four classes involved in the implementation.
Table 8-1 provides a quick introduction to the classes.

Table 8-1.  Classes in the Digest Authentication Implementation

Class Purpose

AuthenticationHandler The message handler that implements the authentication logic. It reads the Authorize
request header using the Header class and sets the WWW-Authenticate response
header by generating a nonce using the Nonce class.

Header The CLR representation of the HTTP Authorize request header in digest
authentication. A new Header object can be created by passing the Authorize header
payload into the constructor. A Header instance can be serialized back into the
Authorize header payload by calling the ToString method.

Nonce The class that can generate a nonce as well as validate a nonce sent by the client.

HashHelper An extension to the type of byte[], an array of bytes to create the corresponding MD5 hash.

Implementation Overview
The different methods in the classes listed in Table 8-1 get called at different points in time of the authentication
process. Before we get to the implementation, let’s take a look at an overview of the sequence that shows the
functionality at different steps.

1.	 The client sends a request without the Authorization header.

2.	 AuthenticationHandler, as part of the request processing, inspects the request for the
authorization header. Because it is absent, it does not establish an authenticated identity.

3.	 Because the action method of ApiController is decorated with the Authorize attribute, it
checks if the identity established is an authenticated identity. That not being the case, the
Authorize attribute sets the response status code to 401 - Unauthorized and short-circuits
the action method execution.

4.	 AuthenticationHandler, as part of the response processing, inspects the response status
code. Because it is 401, it proceeds to set the WWW-Authenticate response header.

5.	 AuthenticationHandler calls Nonce.Generate() to create a new nonce. Along with QOP
and the realm, it sets the nonce in the WWW-Authenticate response header.

6.	 The client reads the server nonce from the WWW-Authenticate header and resubmits the
request with an authorization header containing all the necessary fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

145

7.	 AuthenticationHandler, as part of the request processing, inspects the request for the
authorization header. It finds the header this time. The message handler creates an
instance of the Header class by passing in the authorize header payload.

8.	 AuthenticationHandler, continuing with the request processing, calls Nonce.IsValid()
passing in the nonce value and the nonce counter retrieved from the authorization header
through the Header object. If the nonce is valid, the handler computes the MD5 hash and
compares it with the hash sent in by the client. If there is a match, the handler creates a
principal and sets it in Thread.CurrentPrincipal.

Implementation Details
Finally, you get to see some code! The flow touches different points of different classes. In line with the flow sequence,
I show only the related code under each step. If you need the individual classes as a whole, you can find the code
samples for this chapter in the Source Code/Download area of the Apress web site (www.apress.com). Also, the steps
in the preceding overview section do not correspond exactly to the steps in the detailed implementation shown in this
section. The sequence is the same but the correspondence is not one-to-one.

1.	 Steps 1 and 2 in the preceding overview happen implicitly with our code. We start off
with the process outlined in Step 3, which is done in the response handling portion of the
message handler, as shown in Listing 8-10.

Listing 8-10.  Unauthorized Status Code Generation

public class AuthenticationHandler : DelegatingHandler
{
 protected async override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,

CancellationToken cancellationToken)
 {
 try
 {
 // Request handling goes here
 
 var response = await base.SendAsync(request, cancellationToken);
 
 if (response.StatusCode == HttpStatusCode.Unauthorized)
 {
 response.Headers.WwwAuthenticate.Add(new AuthenticationHeaderValue("Digest",

Header.UnauthorizedResponseHeader.ToString()));
 }
 
 return response;
 }
 catch (Exception)
 {
 var response = request.CreateResponse(HttpStatusCode.Unauthorized);
 response.Headers.WwwAuthenticate.Add(new AuthenticationHeaderValue("Digest",

Header.UnauthorizedResponseHeader.ToString()));
 

www.it-ebooks.info

http://www.apress.com/
http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

146

 return response;
 }
 }
}
 

2.	 The message handler calls the static property UnauthorizedResponseHeader of the Header
class, which returns an instance of Header that corresponds to the WWW-Authenticate
header payload in a 401 Unauthorized response. See Listing 8-11.

Listing 8-11.  Unauthorized Response Header Generation

public static Header UnauthorizedResponseHeader
{
 get
 {
 return new Header()
 {
 Realm = "RealmOfBadri",
 Nonce = <Put your namespace here>.Nonce.Generate()
 };
 }
}

3.	 The static method Generate of the Nonce class, shown in Listing 8-12, gets called. This
method uses the RNGCryptoServiceProvider class provided by the .NET Framework to
generate a byte array of size 16 and creates an MD5 hash of the same. The nonce thus
produced is added to a ConcurrentDictionary before being returned to the caller. I
use ConcurrentDictionary for illustration. In reality, this will most likely be a table in a
database. Because the dictionary is in the application domain, this logic will not work in
case of a pure stateless web farm that does not implement sticky sessions. Also, the Nonce
class keeps adding nonces to the dictionary. There is no code to purge the stale nonces out
of the dictionary in the example.

Listing 8-12.  Nonce Generation

public class Nonce
{
 private static ConcurrentDictionary<string, Tuple<int, DateTime>>

 nonces = new ConcurrentDictionary<string, Tuple<int, DateTime>>();
 
 public static string Generate()
 {
 byte[] bytes = new byte[16];
 
 using (var rngProvider = new RNGCryptoServiceProvider())
 {
 rngProvider.GetBytes(bytes);
 }
 
 string nonce = bytes.ToMD5Hash();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge FaCtors

147

 nonces.TryAdd(nonce, new Tuple<int, DateTime>(0, DateTime.Now.AddMinutes(10)));

 return nonce;
 }

 // IsValid method removed for brevity
}

4. Listing 8-13 shows the extension method that creates the MD5 hash. I use the .NET
Framework class of MD5 to create the MD5 hash. It is important to note that the byte array
returned by the ComputeHash method of MD5 is converted to a hex string before getting
returned by the method.

Listing 8-13. MD5 Hash Creation

public static class HashHelper
{
 public static string ToMD5Hash(this byte[] bytes)
 {
 StringBuilder hash = new StringBuilder();
 MD5 md5 = MD5.Create();

 md5.ComputeHash(bytes)
 .ToList()
 .ForEach(b => hash.AppendFormat("{0:x2}", b));

 return hash.ToString();
 }

 public static string ToMD5Hash(this string inputString)
 {
 return Encoding.UTF8.GetBytes(inputString).ToMD5Hash();
 }
}

5. At this point, the WWW-Authenticate header gets sent back with the nonce and the QOP
of auth. Listing 8-14 shows the ToString method of the Header class that serializes the
Header object into a string representation that can be stuffed into the WWW-Authenticate
header.

Listing 8-14. ToString Method of Header Class

public override string ToString()
{
 StringBuilder header = new StringBuilder();
 header.AppendFormat("realm=\"{0}\"", Realm);
 header.AppendFormat(", nonce=\"{0}\"", Nonce);
 header.AppendFormat(", qop=\"{0}\"", "auth");
 return header.ToString();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

148

6.	 The client reads the response header, gets the nonce and the QOP, formats a proper
Authenticate header containing all the necessary data, and resubmits the request. One
such example request is shown in Listing 8-15.

Listing 8-15.  Example Authorization Header

Authorization: Digest username="aaa", realm="RealmOfBadri", nonce="5039c371d8eed05f0166d6
1e629e9e40", uri="/api/employees", cnonce="0a4f113b., nc=00000001, response="6629fae49393
a05397450978507c4ef1", qop="auth"

7.	 The request from the previous step comes to the request handling portion of the message
handler, shown in Listing 8-16.

Listing 8-16.  Message Handler Request Handling

var headers = request.Headers;
if (headers.Authorization != null)
{
 Header header = new Header(request.Headers.Authorization.Parameter,

request.Method.Method);
 
 if (Nonce.IsValid(header.Nonce, header.NounceCounter))
 {
 // Just assuming password is same as username for the purpose of illustration
 string password = header.UserName;
 
 string ha1 = String.Format("{0}:{1}:{2}", header.UserName, header.Realm,

password).ToMD5Hash();
 
 string ha2 = String.Format("{0}:{1}", header.Method, header.Uri).ToMD5Hash();
 
 string computedResponse = String
 .Format("{0}:{1}:{2}:{3}:{4}:{5}",
 ha1, header.Nonce, header.NounceCounter,
 header.Cnonce, "auth", ha2).ToMD5Hash();
 
 if (String.CompareOrdinal(header.Response, computedResponse) == 0)
 {
 // digest computed matches the value sent by client in the response field.
 // Looks like an authentic client! Create a principal.
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, header.UserName),
 new Claim(ClaimTypes.AuthenticationMethod,

AuthenticationMethods.Password)
 };
 
 var principal = new ClaimsPrincipal(
 new[] { new ClaimsIdentity(claims, "Digest") });

 Thread.CurrentPrincipal = principal;

www.it-ebooks.info

Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

149

 if (HttpContext.Current != null)
 HttpContext.Current.User = principal;
 
 }
 }
}

a.	 The Authorize request header payload is converted into a CLR object Header by
passing the header payload into the constructor.

b.	 The IsValid static method of the Nonce class is called by passing the nonce and
nonce counter.

c.	 If valid, ha1 and ha2 are computed and based on that the digest is calculated, as we
discussed in the preceding section. In practice, the actual password will be retrieved
from the membership store at this point. For brevity, I do not show any code related to
database access and just consider the password to be the same as the user ID.

d.	 If the computed digest matches the digest sent by the client, authentication is
deemed successful and Thread.CurrentPrincipal gets set with an instance of
ClaimsPrincipal. 

8.	 Listing 8-17 shows the Header class with the properties and the constructor that sets these
properties based on the header payload passes into the constructor. The header payload
is split by a comma and each token is parsed as a key–value pair based on the '=' character.
Based on the key, the corresponding property of the Header object is set.

Listing 8-17.  Header Constructor

public class Header
{
 public Header() { }
 
 public Header(string header, string method)
 {
 string keyValuePairs = header.Replace("\"", String.Empty);
 
 foreach (string keyValuePair in keyValuePairs.Split(','))
 {
 int index = keyValuePair.IndexOf("=");
 string key = keyValuePair.Substring(0, index);
 string value = keyValuePair.Substring(index + 1);
 
 switch (key)
 {
 case "username": this.UserName = value; break;
 case "realm": this.Realm = value; break;
 case "nonce": this.Nonce = value; break;
 case "uri": this.Uri = value; break;
 case "nc": this.NounceCounter = value; break;
 case "cnonce": this.Cnonce = value; break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

150

 case "response": this.Response = value; break;
 case "method": this.Method = value; break;
 }
 }
 
 if (String.IsNullOrEmpty(this.Method))
 this.Method = method;
 }
 
 public string Cnonce { get; private set; }
 public string Nonce { get; private set; }
 public string Realm { get; private set; }
 public string UserName { get; private set; }
 public string Uri { get; private set; }
 public string Response { get; private set; }
 public string Method { get; private set; }
 public string NounceCounter { get; private set; }
 
}
 

9.	 The message handler uses the properties of the Header object to retrieve the nonce and
nonce counter, which are passed to the IsValid static method of the Nonce class (see
Listing 8-18). The IsValid method returns true if the nonce is found in the store, which
is a ConcurrentDictionary, if the nonce is fresh, and if the corresponding client nonce
counter is greater than the value in the store.

Listing 8-18.  Nonce Validation

public class Nonce
{
 // Generate method goes here
 
 public static bool IsValid(string nonce, string nonceCount)
 {
 Tuple<int, DateTime> cachedNonce = null;
 nonces.TryGetValue(nonce, out cachedNonce);
 
 if (cachedNonce != null) // nonce is found
 {
 // nonce count is greater than the one in record
 if (Int32.Parse(nonceCount) > cachedNonce.Item1)
 {
 // nonce has not expired yet
 if (cachedNonce.Item2 > DateTime.Now)
 {
 �// update the dictionary to reflect the nonce

// count just received in this request
 nonces[nonce] = new Tu�ple<int,

DateTime>(Int32.Parse(nonceCount),
 cachedNonce.Item2);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

151

 // Every thing looks ok - server nonce is fresh
 // and nonce count seems to be
 // incremented. Does not look like replay.
 return true;
 }
 }
 }
 
 return false;
 }
}
 

Testing Digest Authentication
Writing a C# test harness for testing digest authentication is a slightly more involved process than the one we wrote
for basic authentication. The main reason is that the client must generate the client nonce and keep incrementing the
nonce counter for every request.

Instead of going through that hassle, we will instead use Internet Explorer as the test harness, although any
modern browser can be used for this purpose. The web browser will do all the heavy lifting for us. Just like basic
authentication, digest authentication is part of the HTTP specification, so the browser knows exactly what needs to be
done right from the moment it receives a 401 - Unauthorized status code and a WWW-Authenticate header with the
digest scheme.

Internet Explorer pops up a window to get the user name and password (see Figure 8-4).

Figure 8-4.  Internet Explorer pop-up box

Because we have sent a realm in the WWW-Authenticate header, it shows the realm name correctly this time in
the pop-up box. After receiving the credentials from the user, Internet Explorer uses the server nonce and rigorously
follows all the steps in using the exact ingredients and the recipe to cook up the MD5 digest and then puts that in the
Authorize header.

For subsequent requests, Internet Explorer continues to use the same server nonce but does increment the nonce
count every time a new request is sent. Excellent! You can fire up the Fiddler tool that we discussed in Chapter 4 to
inspect all the requests going back and forth between Internet Explorer and ASP.NET Web API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

152

You can directly issue GET requests to a web API from the browser by typing the URI or you can have JQuery
getJSON() do that at the click of a button, like we have been doing in previous chapters.

Merits and Demerits of Digest Authentication
The biggest advantage of digest authentication is that the password is not transmitted in any form. Also, digest
authentication does not need transport security in most cases. Clients that are capable of creating MD5 hashes, even if
they are not HTTPS enabled, can talk to a web API using digest authentication in a secure manner.

Digest authentication is slightly complex and needs support from the client as well as human users to make the
scheme work efficiently. The client needs to increment a nonce counter for every request and that means the client
needs to be tracking the requests made.

Digest authentication employs hashing based on the nonce that is just generated as part of the first request,
thereby making the rainbow tables useless. A rainbow table is a precomputed table used to crack hashes. It is
essentially a dictionary of precomputed hashes and the corresponding passwords from which they were calculated.
By precomputing and storing the hashes, the rainbow table achieves efficiency in time by trading off space or storage
efficiency. A generated nonce is used to compute hash and hence rainbow tables cannot be used; precomputation
becomes a moot point.

Yet, it is possible for anyone to get the server nonce and start creating digests and compare against the digest sent
by a client through a brute force attack. Weak passwords can be easily retrieved through such brute force attacks. We
will look at brute force attacks in depth in the next section.

ASP.NET Web API or any HTTP service, for that matter, can support both basic and digest authentication
at the same time. It is all about negotiation. A smart piece of software such as a browser, on receiving both
WWW-Authenticate: Basic and WWW-Authenticate: Digest as part of a 401 - Unauthorized response, will pick
digest authentication because it is comparatively stronger. Of course, a client that cannot participate in digest
authentication can use basic authentication. One possible problem with the freedom to choose is that a man in
the middle can remove the WWW-Authenticate: Digest header, tricking a client to send the credentials in the basic
scheme and picking up the same from the header.

Trying to Break Digest Authentication
Digest authentication provides the nonce counter to counteract replay attacks. To test this, let’s replay a previous
successful request through Fiddler. Fire up Fiddler and capture the traffic to your ASP.NET Web API.

Now, after managing to capture a few requests, select a successful ASP.NET Web API request with a 200 OK
response in the web sessions pane on the left. Right-click Replay > Reissue Unconditionally (see Figure 8-5).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

153

If you do this, you will not get another 200 - OK but a 401 - Unauthorized, along with a fresh server nonce. What
is preventing the replay is the check we are doing with the nonce counter to see that it should always be greater
than the previous one. Of course, you can copy and paste the request into ‘Composer,’ edit the nc so that the value
is incremented, and resubmit. Again, it will be a 401. This time, by tinkering with the nc, we have ensured that the
calculated hash does not match the hash in the response field.

Let’s shift our focus toward attacking digest authentication with brute force. In the response field of the
authorization header, the client sends the digest or MD5 hash. There is no way we can recover the password from
the digest, but we can assume the password is one letter ‘a’ and compute the MD5 hash. If the hash thus computed
matches the response field, we have a winner! If not, we don’t lose heart and move on with the next letter, ‘b.’ Once we
reach ‘z,’ we start with ‘aa’ and then ‘ab’ and so on until the hashes match or, in other words, we know the password.

Before we move forward with this, I want to repeat that rainbow tables are of no use with digest authentication.
The digest is computed using both the server nonce and the client nonce. It is not possible to precompute the hashes
in advance and create a dictionary to look up. So, let’s try to muscle our way out of digest authentication using brute
CPU power. First, we need a method to generate combinations of letters. To keep this simple, let’s generate the
passwords based on lowercase letters only—a through z—as shown in Listing 8-19.

Listing 8-19.  Password Generator

static IEnumerable<string> GeneratePassword(IEnumerable<string> input = null)
{
 // ASCII a is 97 and I need the next 26 letters for a - z
 var range = Enumerable.Range(97, 26);
 
 input = input ?? range.Select(n => char.ConvertFromUtf32(n));
 

Figure 8-5.  Replaying requests through Fiddler

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

154

 foreach (var password in input)
 yield return password;
 
 var appendedList = input.SelectMany(x => range.Select(n => x + char.ConvertFromUtf32(n)));
 
 foreach (var password in GeneratePassword(appendedList))
 yield return password;
}
 

Next, we need a method to calculate the hash (see Listing 8-20). It is pretty much the same logic in the handler.
One important thing to note is that ha2 need not be computed every time. Because it is based only on the HTTP
method and URI, it can be computed once and reused. So, I’m hard-coding it in Listing 8-20, for GET and the URI. The
Header class, which is passed into IsMatch(), can be just a collection of properties, as shown in Listing 8-21.

Listing 8-20.  Hash Calculator

static bool IsMatch(Header header, string password)
{
 string ha1 = String.Format("{0}:{1}:{2}",
 header.UserName,
 header.Realm,
 password).ToMD5Hash();
 
 string ha2 = "347c9fe6471afafd1ac2c5551ada479f";
 
 string computedResponse = String.Format("{0}:{1}:{2}:{3}:{4}:{5}",
 ha1,
 header.Nonce,
 header.NounceCounter,
 header.Cnonce,
 "auth",
 ha2).ToMD5Hash();
 
 return (String.CompareOrdinal(header.Response, computedResponse) == 0);
}

Listing 8-21.  Header Class

class Header
{
 public string Cnonce { get; set; }
 public string Nonce { get; set; }
 public string Realm { get; set; }
 public string UserName { get; set; }
 public string Uri { get; set; }
 public string Response { get; set; }
 public string Method { get; set; }
 public string NounceCounter { get; set; }
}
 

With that, we are almost ready. Let’s say we have the ability to sniff a network and we caught a request with a valid
authorization header, like the one shown in Listing 8-22.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

155

Listing 8-22.  Authorization Header

Authorization: Digest username="john", realm="RealmOfBadri", nonce="932444f708e9c1e5391aad0e849ea201",
uri="/api/values", cnonce="968ffba69bfc304eabaebffc10d56a0a", nc=00000001, response="4d0b1211f1024ec
616d55ac8312f5f46", qop="auth"
   

Let’s create an instance of the header and load the values from the header into the properties. I call IsMatch()
in a loop (PLINQ) and when there is a match, I come out after printing the password. I just use DateTime to time this,
although I could have used a StopWatch (see Listing 8-23).

Listing 8-23.  Brute Force Attacker

static void Main(string[] args)
{
 Header header = new Header()
 {
 UserName = "john",
 Realm = "RealmOfBadri",
 Nonce = "932444f708e9c1e5391aad0e849ea201",
 Uri = "/api/values",
 Cnonce = "968ffba69bfc304eabaebffc10d56a0a",
 NounceCounter = "00000001",
 Response = "4d0b1211f1024ec616d55ac8312f5f46",
 Method = "GET"
 };
 
 DateTime start = DateTime.Now;
 
 Parallel.ForEach<string>(GeneratePassword(), (password, loopState) =>
 {
 if (IsMatch(header, password))
 {
 Console.WriteLine("Gotcha ---> " + password);
 loopState.Break();
 }
 });
 
 DateTime end = DateTime.Now;
 Console.WriteLine((end - start).TotalSeconds + " seconds");
 
}
 

The laptop I use has two cores with 2.26 GHz and 2 GB RAM. It’s not especially powerful, but even with this I’m
able to figure out the password of apple in about 46 seconds. But if the password is strong (in other words, longer and
using a mix of uppercase, numbers, and special characters) and not straight out of an English dictionary, it is going to
be very tough to crack!

As they say, any security mechanism can be breached. It is only a time–resource trade-off. The time factor is very
important. What harm is it if someone gets your current online banking password 10 years from now? You will have
changed it more than 100 times by then.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

156

Windows Authentication
Integrated Windows Authentication (IWA), better known by the slightly shorter name of Windows authentication, is
definitely not as far-reaching a mechanism as basic or digest authentication. Unlike basic and digest authentication,
which are backed by the HTTP specification and hence can work on any platform that supports HTTP, Windows
authentication has dependencies on a specific technology stack. As the name indicates, Windows authentication is
all about the Windows platform. The term is used typically to indicate the authentication scheme that makes use of
the Windows account and the associated Microsoft technologies such as Active Directory (AD), Internet Information
Services (IIS), and Internet Explorer (IE).

However, Windows authentication does have a role to play in intra-network scenarios. Imagine users with
Windows AD accounts working on Windows workstations using Internet Explorer to access an intranet web
application running in IIS. This is a frequent scenario in enterprises, and Windows authentication is very relevant for
this type of scenario.

From a developer perspective, Windows authentication is even simpler to implement than basic authentication.
Assuming that using AD for authentication and IIS for hosting the web API are acceptable to you, without writing any
code you can establish the user identity. The WindowsPrincipal object with WindowsIdentity is automatically created
for you by the collaborative effort of IIS, ASP.NET, and Internet Explorer, at times without requiring end users to input
their credentials.

Configuring Windows Authentication
There are two main configuration changes that we need to do to get Windows authentication going.

1.	 Add the <authentication> element to the Web.config file.

2.	 Configure the ASP.NET application to use Windows authentication through IIS Manager.

The first change is for the ASP.NET pipeline to bring in the two modules that establish the WindowsPrincipal
object in Thread.CurrentPrincipal: WindowsAuthenticationModule and DefaultAuthenticationModule. The
second change is for IIS to get the token from Internet Explorer. Web.config is pretty simple. We need to simply add an
element under system.web, as shown in Listing 8-24.

Listing 8-24.  Web.config Change

<system.web>
 ...
 <authentication mode="Windows" />
 ...
<system.web>
 

To make the change to the ASP.NET application in IIS, open Internet Information Services (IIS) Manager
(InetMgr.exe).

In Windows 7, you can just type iis in the Search programs and files text box in the Start pop-up box to get to IIS
Manager. Locate the application in the left tree and double-click the Authentication icon to get to the Authentication
screen shown in Figure 8-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge FaCtors

157

Right-click the Windows Authentication item and select Enable in the pop-up menu to enable Windows
authentication. Also, disable anonymous authentication the same way. This is to make sure the identity established
is an authenticated identity; in other words, valid credentials must be supplied by the client to access this web
application.

Windows Authentication in Action
We now have our web API secured by Windows authentication, hosted in IIS, with the URI of a resource hosted by
our web API being http://server.com/api/Employees/12345. Suppose a user types this URI in the Internet Explorer
address bar and presses Enter. This is not a likely action for most users, but let’s pretend our user is a developer who
wants to go to the web API directly to see the sequence of steps as the action unfolds.

1. The user issues a GET request using IE from a workstation in the same local network
as server.com. The user has logged into the workstation using her Windows network
credential.

2. IIS is the first one to receive the request. Because the web application is set up for
Windows authentication, IIS knows how to go about handling this request: It asks IE for
authentication credentials.

3. Typically, the browser will not present the credentials with the initial GET request and
hence gets back a 401 - Unauthorized. As with the case of any other schemes, the
WWW-Authenticate header gets sent. In this case, two such headers are sent back:
WWW-Authenticate: Negotiate and WWW-Authenticate: NTLM.

Figure 8-6. IIS Manager change

www.it-ebooks.info

http://server.com/api/Employees/12345
http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

158

4.	 Just as IE acted smart on receiving the WWW-Authenticate header with basic or digest
schemes, it now goes about doing what the server needs. IE sends a token representing the
Windows user account of the user. Compared to basic and digest authentication, where IE
had to prompt the user to enter credentials in a pop-up box, IE acts even smarter in this
scenario. It is already running under a Windows account and it silently sends the token
for this account without troubling the user. If IIS is not satisfied with the credentials for
whatever reason, a window similar to the earlier ones pops up and prompts the user to
enter the credentials.

5.	 IE does not send the user name or password to IIS directly. It uses Kerberos or NTLM
authentication, depending on the server and client capabilities. The two options
available with Windows authentication are NTLM and Negotiate. NTLM just uses NTLM
authentication. With Negotiate, there is a level of indirection. Kerberos is attempted first,
and only when it is not possible to use Kerberos, NTML is selected. So, it is pretty much
NTLM or Kerberos, with Kerberos as the first choice.

6.	 In the case of NTLM, IE gets AD to send the authentication information to IIS. For
Kerberos, IE gets a ticket from AD and sends that to IIS. Kerberos is chosen for Windows
2000 or later running on both the workstation and IIS, with both machines in the same
domain. This is typically the case today with corporate networks. If the conditions are not
satisfied, NTLM is chosen.

7.	 Ultimately, the token received by IIS is passed onto ASP.NET. As part of the ASP.NET
pipeline processing, the token gets converted into a WindowsPrincipal object and is
made available to API controllers through the User property or through
Thread.CurrentPrincipal by two modules.

a.	 The first module, WindowsAuthenticationModule, which is activated by the presence
of the element <authentication mode="Windows"/> in the Web.config file, creates
WindowsPrincipal and WindowsIdentity objects to represent the authenticated user
and attaches the principal to the current web request.

b.	 DefaultAuthenticationModule ensures Thread.CurrentPrincipal is set with the
same principal, which the User property of ApiController returns. The great thing
is that the identity established by these modules contains the AD group information
ready to run RBAC off these AD groups, if that is sufficient for the web API business
needs.

Getting into the details of NTLM or Kerberos is not practical for a book dedicated to ASP.NET Web API security.
These topics merit dedicated books, not just sections in a chapter. But I show the HTTP transactions associated with a
typical Negotiate scheme (with Kerberos chosen as a result of the negotiation) in Listing 8-25. Of course, the messages
are touched up for brevity reasons.

Listing 8-25.  Windows Authentication: HTTP Transactions

Transaction 1
GET http://server.com/api/employees/12345 HTTP/1.1
User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)
 
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Negotiate
WWW-Authenticate: NTLM
 
 

www.it-ebooks.info

http://server.com/api/employees/12345
http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

159

Transaction 2
GET http://server.com/api/employees/12345 HTTP/1.1
User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)
Authorization: Negotiate YHUGBisGAQUFAqBrMGmgMDAuBgorBgEEAYI3AgIKBgkqhkiC9xIBAgIGCSqGSIb3EgEC
AgYKKwYBBAGCNwICHqI1BDNOVExNU1NQAAEAAACXsgjiAwADADAAAAAIAAgAKAAAAAYBsB0AAAAPTFQwMDYxODlDVFM=
 
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Negotiate oYHQMIHNoAMKAQGhDAYKKwYBBAGCNwICCqKBtwSBtE5UTE1TU1AAAgAAAAYABg
A4AAAAFcKJ4oz7beEq6PhxAIFyAQAAAAB2AHYAPgAAAAYBsB0AAAAPQwBUAFMAAgAGAEMAVABTAAEAEABMAFQAMAAw
ADYAMQA4ADkABAAOAGMAdABzAC4AYwBvAG0AAwAgAEwAVAAwADAANgAxADgAOQAuAGMAdABzAC4AYwBvAG0ABQAO
AGMAdABzAC4AYwBvAG0ABwAIAPp2snlKqc0BAAAAAA==
 
 
Transaction 3
GET http://server.com/api/employees/12345 HTTP/1.1
User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)
Authorization: Negotiate oXcwdaADCgEBoloEWE5UTE1TU1AAAwAAAAAAAABYAAAAAAAAAFgAAAAAAAAAWAAAAAAAA
ABYAAAAAAAAAFgAAAAAAAAAWAAAABXCiOIGAbAdAAAAD2MaSBcRsZyiME2Njmbv/ISjEgQQAQAAAPUXp1AtIpqEAAAAAA==
 
HTTP/1.1 200 OK
Persistent-Auth: true
WWW-Authenticate: Negotiate oRswGaADCgEAoxIEEAEAAABDh+CIwTbjqQAAAAA=
 

This exchange of messages is done as per the SPNEGO (Simple and Protected GSS-API Negotiation) mechanism,
pronounced spen-go, that defines how IE and IIS use Kerberos in web transactions. The URL of the SPNEGO memo is
http://tools.ietf.org/html/rfc4559.

Impersonation
Generally speaking, impersonation is the ability of a thread to execute in a security context that is different from
the context of the process that owns the thread. When an ASP.NET Web API is secured by Windows authentication,
the WindowsPrincipal object corresponding to the Windows user account under which IE runs is set to the
Thread.CurrentPrincipal or the User property of the controller. This is mainly from an authentication and
authorization point of view. That is, we now know the following: (1) what the user identity is, (2) if the identity is
an authenticated identity, and (3) the AD groups to which the user belongs. The last one is important if web API
authorization is going to be based on the AD groups.

Windows authentication brings to the table an important dimension of security, which is otherwise not possible
in other methods. In basic or digest authentication, we do get a user name from the identity. But this user is only an
application-level user. From the Windows operating system (OS) point of view, the user is not a Windows account or
OS-level user. Hence, the Windows privilege checks—for example, checking if a user can access a directory or if a user
can modify a file, and so on—cannot be applied. However, in the case of Windows authentication an authenticated
user does mean something to the Windows OS. The user is a Windows account that has privileges to do certain things
and vice versa. With Windows authentication, it is possible to let the thread that is servicing the request to our web
API assume the context of the Windows account of the user and perform the actions on behalf of the user’s account.

This is a huge thing for a corporate scene. For example, any local resource can be access controlled through the
existing AD groups in the corporate domain. Now, if we can simply make the thread running our web API inherit the
privileges of the user, we don’t need to perform any access control checks programmatically. If the user is not in
the AD group that has the privileges to access a resource, the request to access the resource is going to fail anyway
for the want of privilege. We just need to handle the failure. Examples of a resource are a local file or the private key
of an X.509 certificate. If a user SomeDomain\jqhuman does not have privileges to access a specific certificate, when
the web API code runs in the context of SomeDomain\jqhuman the code execution will automatically fail.

q
www.it-ebooks.info

http://server.com/api/employees/12345
http://server.com/api/employees/12345
http://tools.ietf.org/html/rfc4559
http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

160

To enable the impersonation, we just need to add another line to Web.config, in addition to the authentication
mode, as shown in Listing 8-26.

Listing 8-26.  Impersonation

<system.web>
 ...
 <authentication mode="Windows" />
 <identity impersonate="true" />
 ...
<system.web>
 

With this configuration, ASP.NET will impersonate the authenticated user, and all resource access is performed
under the security context of the authenticated user. There are cases where you would like to impersonate on a
specific case-by-case basis and not on a blanket basis. For those cases, we can impersonate the user temporarily,
as shown in Listing 8-27. I want to bring to your attention the concept of impersonation I covered in Chapter 5. It is
almost exactly the same here but with a slight difference, which is that I am impersonating the WindowsIdentity of
what is set in Thread.CurrentPrincipal. In Chapter 5, I showed you how to impersonate an identity that I created
from the token I got from LogonUser().

Listing 8-27.  Temporary Impersonation

WindowsIdentity id = (WindowsIdentity)User.Identity;
using (WindowsImpersonationContext impersonatedUser = id.Impersonate())
{
 // WindowsIdentity.GetCurrent().Name will be that of the user
 // All actions executed here will be under the context of the Windows account of the user
 
 impersonatedUser.Undo(); // Undo the impersonation, once done
}
 
// At this point, we are back to executing under the context of default ASP.NET process account
 

Note■■   Impersonation gives access to only local resources. If we have to extend this capability to access network
resources such as a file share, delegation is the answer. Kerberos authentication lets us use Kerberos delegation to pass
the user’s identity to access network resources. Delegation can be a constrained one; administrators can specify the
resources another server or domain account can access while impersonating.

Testing Windows Authentication
Testing a web API secured by Windows authentication using Internet Explorer is the most convenient way. IE does
all the heavy lifting. In reality, no one is going to hit the web API directly from IE. However, in the case of another
ASP.NET Web application using our web API, if the web application is also secured by Windows authentication, the
web API will be passed the same token and hence get the same WindowsPrincipal, even when accessed by AJAX
through JQuery. One thing to note here is the same origin policy. As long as the web API and the web application are
considered to be in the same origin, JQuery will have nothing to complain about.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

161

What if we have to test the web API through a nonbrowser client? A simple C# console application can
communicate to our web API. Listing 8-28 shows the C# code, using System.Net.Http.HttpClient to communicate
to our API. Although I use HttpClient, other classes in the .NET Framework such as WebClient can also be used.

Listing 8-28.  Windows Authentication Web API Test Client

using (var handler = new HttpClientHandler() { Credentials = CredentialCache.DefaultCredentials })
{
 using (var httpClient = new HttpClient(handler))
 {
 var result = httpClient.GetStringAsync("http://localhost/webapi/api/employees/12345").Result;
 }
}
 

Merits and Demerits of Windows Authentication
The first and foremost advantage in using Windows authentication is the convenience or simplicity in getting the
identity established by the .NET Framework without having to write a line of code. IIS, ASP.NET, AD, and IE do all the
heavy lifting and give you an authenticated WindowsPrincipal to work with.

From an IT administration point of view, the user management is outsourced internally to the Windows
administration team that administers the user accounts. Windows authentication uses the Windows accounts from
AD and hence the application is relieved of the burden of user management—not just the initial overhead to create
user IDs, but also ongoing tasks like resetting a password if a user forgets his password and so on. Piggybacking on the
corporate AD has security benefits as well. As soon as a Windows account is deactivated, the application access will
also get revoked automatically. In addition, the corporate-level security policies of enforcing password strength and
resets are automatically inherited by the application using Windows authentication.

Another advantage worth mentioning is the impersonation capabilities. In some cases, it will be a huge
advantage if we need to strictly execute under the context of each of the individual user accounts. Without Windows
authentication, it is still technically possible to impersonate, provided we get the Windows account credentials
of individual users. In a practical sense, though, it is not possible to do this unless you are willing to live with the
nightmares of maintaining and protecting Windows credentials in your system. For most enterprise-grade production
systems, Windows authentication is the only way to implement impersonation.

The major disadvantage is there is too much reliance on the Microsoft technology stack, especially given the
nature of ASP.NET Web API in embracing HTTP, which is a standard that cuts across platforms. Using Windows
authentication goes in the opposite direction with respect to the reach.

Clients must use Windows and users need to have Windows accounts. Kerberos requires the client to have direct
connection to the domain controller, which is generally the case only with an intranet. NTLM is generally stopped by
proxy servers. For these reasons, Windows authentication is best suited for intranet usage.

Apart from the technology stack, the nature of the application can also limit the choice of Windows
authentication. For example, although it makes sense to create an AD account for a new employee, it might not make
the same sense to create an AD account for each potential candidate who applies for the position. In some cases, the
security policies related to the creation of Windows accounts might prohibit account creation for the entire user base.

Just like basic authentication and cookies-based mechanisms such as forms authentication, browsers tend to
cache authenticated credentials, thereby making the Windows authentication susceptible to CSRF.

www.it-ebooks.info

http://localhost/webapi/api/employees/12345
http://www.it-ebooks.info/

Chapter 8 ■ Knowledge Factors

162

Summary
Authentication is the process of discovering the identity of a user and verifying the same by validating the
user-supplied credentials against an authority. The credential can be a knowledge factor that the user knows,
such as a password. It can also be an ownership factor that the user owns or an inherence factor that the user is.

RFC 2617, “HTTP Authentication: Basic and Digest Access Authentication” provides the specification for
HTTP’s authentication framework, which comprises basic access authentication and digest access authentication.
Both mechanisms are password-based. Whereas a password is sent in clear text in basic authentication, only a hash
created that is based on the password is sent in the case of digest authentication.

The biggest advantage of basic authentication is its simplicity, whereas sending the password in clear text
is its biggest weakness. For this reason, basic authentication must always be implemented with HTTPS. Basic
authentication is susceptible to CSRF attacks because a web browser caches the authenticated credential and sends
it to the server automatically, whenever the browser makes a subsequent request to the same server and realm
combination.

Digest authentication is comparatively safer to use with plain HTTP. On the flip side, digest authentication
is complex and needs support from the client as well as human users to make the scheme work efficiently.

IWA or Windows authentication is another password-based authentication mechanism that relies on the
Windows infrastructure. It is a good fit mainly for intranet scenarios. Windows authentication is very simple to
implement from a developer’s point of view, but it is not platform-agnostic. It also has CSRF risks similar to basic
authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

163

Chapter 9

Ownership Factors

As you saw in Chapter 5, authentication is a fundamental aspect of security that involves verifying credentials
supplied by a user to establish an identity for the user in an application. A credential can be a knowledge factor that
the user knows, an ownership factor that the user owns, or an inherence factor that the user is. I covered knowledge
factors in Chapter 8. In this chapter, I focus on ownership factors.

An ownership factor is an element that a user owns or possesses, such as a key, certificate, or token. Unlike a
knowledge factor, which can be passed on to others easily, intentionally or otherwise, it is difficult to share an
ownership factor. An employee can share a knowledge factor, such as his password, with a coworker and ask her
to submit the timesheet that he forgot to submit on Friday evening, despite the fact that it is against his company’s
policy. Worse yet, an employee could write his password on a sticky note and leave it next to a keyboard. An
ownership factor such as an X.509 client certificate installed in the certificate store of a machine is much safer, and
exporting it is generally beyond the technical prowess of most typical business users. Also, Windows-based privileges
can be used to make the sharing harder or even impossible.

In this chapter, we look at securing ASP.NET Web API through ownership factors such as a preshared key, an
X.509 client certificate, and a SAML token. I dedicate the next chapter to web tokens, which are another kind of
ownership factor. Web tokens are a good fit for RESTful services. Specifically, I cover the Simple Web Token (SWT) and
the JSON Web Token (JWT).

Preshared Key
A preshared key (PSK), also known as an API key, is a secret that is shared between two parties out-of-band prior to
the actual usage. The out-of-band sharing typically happens over a channel more secure than the channel through
which the communication of the actual messages is meant to happen subsequently. Security based on PSKs typically
uses a symmetric key cryptographic algorithm similar to what we saw in Chapter 6.

At a fundamental level, a PSK can be used like a secret handshake or shibboleth. If a client sends ‘the’ PSK,
which is, of course, common to all who are supposed to use the service, the request is serviced. If not, a status code of
401 - Unauthorized Response is sent back.

For this kind of rudimentary scheme, transport security is a must. Otherwise, anyone who can sniff the traffic
could get the key and use your web API. You might wonder if there is any real use case for this kind of security
arrangement. Devices, such as Internet of Things (IOT) devices, need to communicate to a central server, such as a
web API, through HTTP. These devices might not have the resources to store individual keys. At the time the devices
were produced (typically mass-produced), they were given one common shared key that was probably cast in stone at
that time. This is better than no security at all. A web API can at least look for one of these keys burned in at the time of
manufacturing to see if the request is from one of the legitimate devices.

At the next level are clients capable of sending the individual PSK. The advantage is that the web API can now
individually identify the client. Suppose I sniff the traffic and get a bunch of requests. Next, I make up a request of my
own, using a shared key that I obtained in the traffic capture. The web API will process my request because there is

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

164

no way for it to differentiate between a genuine request and a fake one. In this case, as with the earlier case, transport
security is a must.

Is this mechanism similar to the case of basic authentication, or perhaps a stripped-down version of it, sending
only the username without sending the password? It’s similar, but not exactly the same. The username and password
are knowledge factors. This basically means you know them. You can remember them or maybe look at a sticky
note and type in what was written there into a system. Even worse, you can tell your friend what your username and
password are and she can type them in and impersonate you.

Ownership factors, such as PSKs, are different. A PSK is typically a big bunch of bytes appearing in base64-encoded
format, or perhaps a hex string that is impossible for even the brightest person to memorize and remember. It is not
just about being able to remember, but also is about how it is used. PSKs are typically saved somewhere in a system.
The key is used by an application on the user’s behalf in transactions, precluding the need for a user to enter the key
manually.

A great example for this type of a PSK is a key created through Windows Azure Tools for Microsoft Visual Studio.
You can use the Windows Azure Storage node in Server Explorer to look at blob and table data from your Windows
Azure storage accounts. When you add a storage account to Server Explorer, the application creates a lengthy key as
the input. Visual Studio uses this key to communicate with a web service.

Figure 9-1.  PSK example using Visual Studio and Azure

Designing a Preshared Key Security Mechanism
A PSK in its simplest form is a key that is exchanged between two parties out-of-band with the sender using the
shared key as is in the messages as the credential. For this reason, HTTPS generally is a must for PSKs. Without help
from transport security, it is easier for a malicious user to get the PSK and use it in a malicious request, just like a
legitimate request.

The greatest advantage of a PSK is that it is exchanged out of band. In digest authentication, which I covered in
Chapter 8, a server nonce is generated on the fly and shared with the client as part of the transaction. This means a
malicious user can see the nonce. Despite that, the advantage associated with the server nonce is that a malicious
user cannot anticipate the nonce and prepare for it ahead of the transaction because it is randomly generated at the
time the transaction is initiated. But with a PSK, we are in an even stronger position. A PSK will not be known to the
malicious user. However, we need to be aware of possible security weaknesses and defend against those weaknesses.
We examine the most common security risks in the following sections. Later in the chapter, we’ll build a secure PSK
mechanism that does not require HTTPS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

165

Defense Against Replay Attacks
Suppose we design our security mechanism to transmit the credentials not in plain text but encrypted using the PSK.
The encrypted credential is sent in the message, typically in the HTTP request header. A malicious user cannot decrypt
the header and extract the credentials but can replay the earlier request as is. Worse, a malicious user can frame a new
request and use only the header value containing the valid credentials from the previous successful request.

This type of replay attack is a form of attack in which a valid message exchange that was previously successful is
maliciously repeated as is or repeated with a tampered message body retaining the bits containing the credentials.
Imagine that you making a service request with your encrypted credentials asking the service to transfer $500
from your bank account to a utility company. A malicious user does not need to decrypt the ciphertext to get your
password. He can simply submit a request like your previous request but change the recipient details to his account
and change the amount to $50,000. The service will accept that request because the decrypted header value contains
authentic credentials.

We need to acknowledge the fact that a security mechanism built on a PSK will be susceptible to a replay
attack and guard against it. For example, a timestamp is a relatively effective way to defend against a replay attack.
A timestamp can be added to the message and encrypted along with the rest of the message content. The service can
retrieve the timestamp after decrypting the message and fail the request if the timestamp is too old for the threshold
that is already agreed on. This cuts down on the window of opportunity to replay a request.

However, there is a small downside to the timestamp approach. For the timestamp to work, the client’s clock and
the server’s clock must be in sync to a reasonable extent. If we set the time window to three seconds, within that time
the request must get processed by the web API. If the clocks are not exactly in sync, the window of three seconds can
further shrink, failing even the genuine requests, or grow and accommodate malicious replay requests.

An alternative to a timestamp is a counter such as the nonce counter that we saw with digest authentication. With
a counter, we don’t need to be concerned about the skew between the clocks. However, clients must implement a
counter to ensure the count sent in a request is greater than the count in the previous request at least by one, and the
server must keep a record of the last received counter. Of course, the message has to be signed so that a malicious user
does not increment the counter and replay the rest of the request.

Defense Against Identifier Misuse
In its simplest form, a PSK is both the user identifier and the credential. For this reason, PSKs must be unique. Given a
key, an application must be able to identify the corresponding user without any ambiguity. The basic premise that we
are working on is the avoidance of HTTPS. For this reason, the PSK cannot be transmitted as is.

We need to have two keys: one acting as the identity of the user and the other acting as the credential. I call the
former a public key and the latter a private key, similar to the keys we saw in Chapter 6 with asymmetric algorithms.
However, these keys are not mathematically linked. Also, the same key used to sign on the sender’s end is used to
validate the signature on the receiver’s end; hence, this is just a symmetric shared key. But similar to public key
cryptography, only the private key must be guarded.

As we saw in Chapter 8, in digest authentication a username is transmitted, although the password is not sent.
In contrast, when we use two keys, the username or user ID is not transmitted. Only the identifier key is sent. By also
making the identifier a key, we strengthen the mechanism and prevent identifier misuse by the users sharing the ID.
A user must “possess” both the public key (identifier) and the private key (credential), not just know them, to access
the web API.

Defense Against Man-in-the-Middle Attacks
With no HTTPS, a man-in-the-middle (MITM) attack is one of the most significant threats. The primary mechanism
to ensure data integrity of messages is a Hash-Based Message Authentication Code (HMAC). HMAC is just a piece
of data created through a cryptographic hashing algorithm and a shared secret key. In this section, I show you how
to create an HMAC using the SHA256 algorithm. For the purpose of this implementation, I ignore confidentiality

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

166

requirements. However, if the message needs to be encrypted for confidentiality, you can easily add that functionality
using the same private key we use for HMAC or you can introduce a new key specifically for encryption.

When a user sends a request, it includes three important parameters.

1.	 The public key, which is the key associated with the user. The public PSK is transmitted,
not the actual identifier or username.

2.	 The counter, which is the same as the nonce counter that we saw with digest
authentication in Chapter 8. This is just a number that the client application keeps
incrementing with each request.

3.	 The timestamp or simply the stamp, with a number representing the seconds elapsed
since midnight of January 1, 1970 UTC, also known as UNIX time.

In addition to the parameters, the request includes a signature that ensures that none of the parameters are
tampered with. It is possible to create the signature based not only on the three parameters but also on the entire body
of the request if the objective is to make sure nothing in the request gets modified.

To make sure no one tampers with the parameters, we can include an HMAC-SHA256 of all three values plus the
request URI and HTTP method. Listing 9-1 shows an HTTP request secured by the PSK mechanism. Figure 9-2 shows
the PSK design.

Listing 9-1.  HTTP Request Message 

GET http://localhost.:12536/api/values/7 HTTP/1.1
X-PSK: DpLMCOihcYI2i6DaMbso9Dzo1miy70G/3+UibTccoKaen3Fecywdf7DrkcfkG3KjeMbZ6djBihD/4A==
X-Counter: 33
X-Stamp: 1350214768
X-Signature: 9D2rq7KuFh9KxvibgT3bLNIFAm3HFWLD1Adn/KyagIY=
Host: server.com 

Public Key
a0b1c2d3e4f5g6h7==

Private Key
z9y8w7v6u5t4s3r2==

Client
Application Web API

User ID Public Key Private Key Counter

jqhuman a0b1c2d3e4f5g6h7== z9y8w7v6u5t4s3r2== 32

a0b1c2d3e4f5g6h7==
Stamp: 1350075875
Counter: 33

Signature: f87d7jw3jnfii2op=
(SHA256 hash using Private Key)

John Q. Human

Figure 9-2.  PSK pair

Table 9-1 shows the custom headers we use and describes how the values in the headers are used in the
validation to counteract replay and MITM attacks.

www.it-ebooks.info

http://localhost.:12536/api/values/7
http://www.it-ebooks.info/

Chapter 9 ■ Ownership FaCtOrs

167

Implementing the Preshared Key Design
In this section, I show you how to implement PSK-based authentication in ASP.NET Web API. I start by implementing
my design on the client side. First, I need a mechanism to generate keys. I use the same mechanism involving
RNGCryptoServiceProvider that I used in Chapter 6 to generate shared keys (see Listing 9-2). I use a key size of
64 bytes here.

Listing 9-2. Shared Key Generation

using (var provider = new RNGCryptoServiceProvider())
{
 byte[] secretKeyBytes = new byte[64];
 provider.GetBytes(secretKeyBytes);

 Console.WriteLine(Convert.ToBase64String(secretKeyBytes));
}

For the obvious reason that I am making up my own security mechanism here using PSKs, I will not get any help
from a browser out of the box. The following steps show how to create a console application in C#.

1. I start with a typical console application with a Program class containing a Main method.
For the purpose of illustration, I hard-code a public and a private key. The public and
private keys are cut in half and then joined together in the code listing for cosmetic
reasons because the keys are too long to fit into a single line (see Listing 9-3).

Listing 9-3. PSK Client: Console Application

class Program
{
 static void Main(string[] args)
 {
 string publicKey = "DpLMCOihcYI2i6DaMbso9Dzo1miy70G/3+UibTttjLSiJ3cco";
 publicKey += "Kaen3Fecywdf7DrkcfkG3KjeMbZ6djBihD/4A==";

Table 9-1. Custom Headers

Custom Header Purpose

X-PSK The public shared key used as the user identifier.

X-Signature If the value sent by the client application in the X-Signature matches the HMAC-SHA256 of the
values of X-PSK, X-Counter, X-Stamp, request URI, and the HTTP method, we can safely conclude
that nothing was altered in transit.

X-Stamp The value sent by the client and the UNIX time of the current time are compared. If the
skew between these two are within the allowable tolerance limit, the request is not a replay.
UNIX time is the number of seconds elapsed since midnight of January 1, 1970 Coordinated
Universal Time (UTC).

X-Counter If the value sent by the client is greater than the last received counter in the record kept by
the server, the request is not a replay. Although I use both the timestamp and counter in the
implementation example in this chapter, one typically is good enough, depending on your
needs. If clock times are reasonably in sync, a timestamp is the best approach because there is no
overhead in terms of storing the counter in the web API side or incrementing it in the client side.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

168

 string privateKey = "W9cE42m+fmBXXvTpYDa2CXIme7DQmk3FcwX0zqR7fmj";
 privateKey += "D6PHHliwdtRb5cOUaxpPyh+3C6Y5Z34uGb2DWD/Awiw==";
 
 // The code to use HttpClient to make a web API request goes here
 
 Console.Read();
 }
}

 

2.	 I use HttpClient to set the headers and make a GET request (see Listing 9-4).

Listing 9-4.  Client: Console Application 

using (HttpClient client = new HttpClient())
{
 // Step 2-a
 int counter = 33;
 Uri uri = new Uri("http://localhost:54400/api/employees/12345");
 
 client.DefaultRequestHeaders.Add("X-PSK", publicKey);
 client.DefaultRequestHeaders.Add("X-Counter", String.Format("{0}", counter));
 
 // Step 2-b
 DateTime epochStart = new DateTime(1970, 01, 01, 0, 0, 0, 0, DateTimeKind.Utc);
 TimeSpan ts = DateTime.UtcNow - epochStart;
 string stamp = Convert.ToUInt64(ts.TotalSeconds).ToString();
 client.DefaultRequestHeaders.Add("X-Stamp", stamp);
 
 string data = String.Format("{0}{1}{2}{3}{4}", publicKey, counter, stamp,

uri.ToString(), "GET");
 
 // Step 2-c
 byte[] signature = Encoding.UTF8.GetBytes(data);
 using (HMACSHA256 hmac = new HMACSHA256(Convert.FromBase64String(privateKey)))
 {
 byte[] signatureBytes = hmac.ComputeHash(signature);
 client.DefaultRequestHeaders.Add("X-Signature",

Convert.ToBase64String(signatureBytes));
 }
 
 var httpMessage = client.GetAsync(uri).Result;
 if(httpMessage.IsSuccessStatusCode)
 Console.WriteLine(httpMessage.Content.ReadAsStringAsync().Result);
}

a.	 I’m hard-coding a counter here and not incrementing it with every request, just to
keep the example code simple. The counter value is sent in the X-Counter header.

b.	 For UNIX time, I create a new DateTime object of type UTC corresponding to January 1,
1970. I get the current time in UTC using DateTime.UtcNow and compute the
difference between these two dates in seconds. That is the UNIX time.

www.it-ebooks.info

http://localhost:54400/api/employees/12345
http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

169

c.	 The signature or HMAC is computed for the public key, two headers, and the resource
URI and HTTP method concatenated as one single string, with no delimiters. Finally,
I’m using HMACSHA256 to compute the signature, which is stuffed into the X-Signature
header. I’m simply following the convention of using the X- prefix to indicate that
these are our own custom headers.

In the server side, which as usual is ASP.NET Web API, I write a message handler to check the PSK
(see Listing 9-5).

Listing 9-5.  PSK Delegating Handler 

public class PskHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,

CancellationToken cancellationToken)
 {
 string privateKey = "W9cE42m+fmBXXvTpYDa2CXIme7DQmk3FcwX0zqR7fmj";
 privateKey += "D6PHHliwdtRb5cOUaxpPyh+3C6Y5Z34uGb2DWD/Awiw==";
 
 var headers = request.Headers;
 
 if (headers.Contains("X-PSK") && headers.Contains("X-Counter") &&
 headers.Contains("X-Stamp") && headers.Contains("X-Signature"))
 {
 string publicKey = headers.GetValues("X-PSK").First();
 string counter = headers.GetValues("X-Counter").First();
 ulong stamp = Convert.ToUInt64(headers.GetValues("X-Stamp").First());
 string incomingSignature = headers.GetValues("X-Signature").First();
 
 string data = String.Format("{0}{1}{2}{3}{4}", publicKey, counter, stamp,
 request.RequestUri.ToString(),
 request.Method.Method);
 
 byte[] signature = Encoding.UTF8.GetBytes(data);
 using (HMACSHA256 hmac = new HMACSHA256(Convert.FromBase64String(privateKey)))
 {
 byte[] signatureBytes = hmac.ComputeHash(signature);
 if (incomingSignature.Equals(
 Convert.ToBase64String(signatureBytes), StringComparison.Ordinal))
 {
 DateTime epochStart = new DateTime(1970, 01, 01, 0, 0, 0, 0, DateTimeKind.Utc);
 TimeSpan ts = DateTime.UtcNow - epochStart;
 
 if (Convert.ToUInt64(ts.TotalSeconds) - stamp <= 3)
 return await base.SendAsync(request, cancellationToken);
 }
 }
 }
 
 return request.CreateResponse(HttpStatusCode.Unauthorized);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

170

 The signature computation is the same as what is done on the client side. After all, that is the idea. If there is any
problem in the validation, I send back a 401 - Unauthorized Response.

To keep this code example lean, I intentionally skip the following steps in the message handler.

1.	 I don’t check to see if the counter is incremented from the previous request, and for that
reason I don’t maintain a record of the counters. If you want to see this implementation,
please refer to digest authentication in Chapter 8, where I show how the nonce counter is
stored and checked.

2.	 I don’t retrieve the private key corresponding to the public key. I simply hard-code the
private key I use in the client (the console app).

3.	 I don’t create an object of type IPrincipal and set it to Thread.CurrentPrincipal for
other components down the pipeline to use. When you implement this mechanism
with the backup from a persistence store such as a database, while retrieving the private
key from the data store for the incoming public key you can retrieve the corresponding
username as well. Based on that, claims such as the username claim and other relevant
claims can be built and the principal created.

In the preceding code, I check for freshness of the request by looking at the timestamp. If the timestamp was
made only 3 seconds ago, I accept the request. It could be too close for some scenarios, and it does demand that the
client and server clocks are closely synchronized. However, it does a good job of preventing replays.

You can test this by using the Fiddler tool, the same tool we used in Chapter 4. Launch Fiddler and make sure it
is capturing “All Processes.” From the console app, make a request and ensure you get 200 - OK. As soon as you see
the result column in the web sessions list on the left pane change from a dash to 200, right-click and select Replay
➤ Reissue Unconditionally from the shortcut menu. You should get a 401 - Unauthorized status code.

Merits and Demerits of a Preshared Key
If we implement a PSK by using a key pair, we ensure that the PSK is not sent in the messages exchanged. Because
the secret key is not sent, we can use HTTP. Because we implement message security and not transport security, the
need for the server-side X.509 certificate is obviated. For this reason, the message-security-based PSK is relatively cost
effective. Of course, we generate the random keys ourselves to be used as the symmetric PSK. The message-security-
based mechanisms generally are considered superior to transport security because message security guarantees
security despite the presence of intermediaries.

On the flip side, PSKs are based on the assumption that both parties involved will keep the keys secure. If
it is compromised on one end, it affects both parties. Also, the message security mechanism is slightly complex
to implement. Even so, it is a smaller price to pay than the cost of implementing transport security. Another
disadvantage of PSKs is that they can cause overhead for IT departments because the keys need to be rotated regularly
as a countermeasure to the security risk involved with two parties having to keep a shared key secret.

X.509 Client Certificate
A digital X.509 certificate, when used as a credential to authenticate an entity to a service, is called an X.509 client
certificate. The entity to which the certificate is issued could be an application or an end user. Unlike the server
certificates that are issued to an entity such as a company, a client certificate can be issued to individual end users to
be used as their credential to authenticate into an application. In the context of a web application, the user agent (the
web browser) can automatically pick up the client certificate from the local store and present it to the server as the
user’s credential, on whose behalf it transacts with the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

171

A digital certificate binds an identity to a pair of keys that can be used to encrypt and sign data. In Chapter 6, we saw
encryption and signing in action using the pair of public and private keys from a digital certificate as well as without a
certificate. Obviously, the sole purpose of existence of a digital certificate is not for providing a public–private key pair
for public key cryptography. It is more than that, because a digital certificate ensures that the public key contained in the
certificate belongs to an entity to which the certificate was issued. A digital certificate is an identity. In this section, we
focus specifically on the client certificate, which is the digital certificate issued to an end user to be used as a credential
for authentication.

A digital certificate is issued by a certification authority (CA). A certificate typically contains the following items:

Public key•	

Name of the entity to which the certificate is issued•	

Date of expiry•	

CA who has issued the certificate•	

Serial number associated with the certificate•	

Digital signature created using the CA’s private key•	

Algorithm used to create the signature•	

The most widely accepted format for digital certificates is defined by the CCITT X.509 international standard.
When someone mentions a digital certificate, he typically is referring to a X.509 certificate. Sometimes, people do
refer to a certificate by the name of “SSL certificate” because the major use for X.509 certificates is with the SSL/TLS
protocol.

Server Certificate vs. Client Certificate
An X.509 certificate that is used by a server as a credential to prove its identity to the end user (or the user agent the
user uses) is called a server certificate. An X.509 certificate that is used by an end user through the user agent to prove
her identity to a server is called a client certificate.

An X.509 certificate as a credential to prove one’s identity is relevant for the communication involving transport
layer security (TLS). In our case, it is TLS with HTTP, known more commonly as HTTPS. We saw in Chapter 4 how the
X.509 certificate issued to a server is used and checked by browsers when HTTPS is used. During the TLS handshake
process the web server sends the X.509 certificate (with the public key only), which is issued to the entity that owns
the web site, to the user agent (web browser). This certificate is called a server certificate. The browser validates it
against the list of CAs it trusts. If the certificate is in the trusted CA list and the certificate is issued to the web site to
which the browser currently connects, the web browser is convinced about the server’s identity. So far, this check
is done from the perspective of ascertaining the authenticity of the web server’s identity. In other words, the server
certificate is the means to prove the identity of the server to the end user. Of course, the end user does not check the
certificates during the TLS handshake. The user agent or the web browser does it, on behalf of the user.

TLS allows mutual validation. Just like a web browser validating the authenticity of the server credential, a server
can validate the authenticity of the user credential. A browser can be configured to send an X.509 certificate of the end
user to the web server when it establishes the secure connection through a TLS handshake. Such an X.509 certificate,
which is sent by the browser to the web server as a means to prove the identity of the end user to the server, is called a
client certificate (not a user certificate, although it basically is a user credential). A client certificate is generally issued
to a user.

An X.509 certificate can be used as both a server certificate and a client certificate. What really differentiates
a certificate is the end of the communication channel where it is used. The extended key usage indicates how a
certificate is supposed to be used, as shown in Figure 9-3. A server certificate, when configured to be used as client
certificate, will never work and vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

172

Using Client Certificate for Authentication in ASP.NET Web API
In this section, I implement authentication in ASP.NET Web API using an X.509 client certificate. There are several
steps, which are mostly configuration-related steps that I need to perform to implement client certificate-based
security in ASP.NET Web API. For this purpose, I use web-hosted ASP.NET Web API, which uses IIS. For the client
side, I use Internet Explorer. But I do show you how to consume a web API outside of a browser, through a C# console
application. Following is an overview of the steps to implement client certificate-based authentication in ASP.NET
Web API.

1.	 Enable HTTPS in IIS. Although you must use a CA-issued certificate for this purpose
in production, I use a self-signed certificate. Make HTTPS and the client certificate
mandatory in IIS.

2.	 Create a self-signed certificate to be used as a client certificate and package it for
distribution using the PVK2PFX tool. Configure this certificate in Internet Explorer.

3.	 Implement a message handler in ASP.NET Web API to retrieve the client certificate from
the request, validate the same, and set the principal object.

SELF-SIGNED CERTIFICATE

A self-signed certificate is signed by the same entity for whose identity it stands. A self-signed certificate is
signed with its own private key! In short, this is similar to me certifying myself. In the real world, unless you are
someone who everyone else trusts, no one is going to believe the certificate you give to yourself. A third party
that is trusted by both the first and second party is needed to complete the circle of trust. In the world of digital
certificates, that trusted third party is a certification authority (CA) such as VeriSign. A certificate issued by a CA is
trusted by all, but it does cost money. A self-signed certificate, such as the one created by the tool Makecert that
we saw in Chapter 6, costs nothing but is trusted by no one. It can be used for testing purposes only.

Figure 9-3.  Server certificate vs. client certificate

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

173

Enabling HTTPS in IIS through Self-Signed Certificates
To enable HTTPS in IIS, I use Visual Studio 2012 to create the application in IIS and IIS Manager (InetMgr.exe) to do
the rest. The following steps show the process.

1.	 Launch Visual Studio an as administrator.

2.	 Create a new ASP.NET MVC 4.0 project with the Web API template. In Solution Explorer,
double-click the Properties node under the project (see Figure 9-4).

Figure 9-4.  Running a web API application in IIS

3.	 Select Use Local IIS Web server and make sure the Use IIS Express check box remains
cleared. Click Create Virtual Directory so that Visual Studio creates a virtual directory for
you as part of the Default Web Site.

4.	 Next, use IIS Manager to generate a server certificate, as shown in Figure 9-5. I use IIS 7.5.
Depending on the version you use, what you see on your machine could be different from
the screenshots. Click on the root machine node in tree view in the left pane and
double-click the Server Certificates icon in the right pane. On the resulting screen,
click the Create Self-Signed Certificate. . . link. Enter a friendly name such as
MyWebApiCert in the pop-up and click OK to complete the server certificate generation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

174

5.	 Now that we have the server certificate, we need to let IIS use it. Click the Default Web Site
node of the tree view in the left pane. In the Actions pane on the right, click Bindings. . . .
Click Add (see Figure 9-6). In the Add Site Binding dialog box, select https as Type and
select the certificate we just generated, which is MyWebApiCert. Click OK to finish creating
the binding.

Figure 9-5.  IIS Manager: Certificate generation

Figure 9-6.  IIS Manager: Configuring HTTPS binding

i
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

175

6.	 Now we are all set to invoke our web API using HTTPS. When we do so directly through
a browser, IIS will send the public key of the self-signed server certificate we just generated
to the browser. Because this is a self-signed certificate, the browser will not be happy and
will show a warning that the certificate is not something it trusts. But it works!

7.	 We will now configure IIS to mandate a client certificate. It is just a configuration change.
Click the virtual directory of the tree view in the left pane. As shown in Figure 9-7, double-click
SSL Settings, select the Require SSL check box, and select the Require radio button. That
completes the configuration changes we need to make in IIS.

Figure 9-7.  IIS Manager: Configuring to mandate a client certificate

Creating and Configuring the Client Certificate
IIS 7.0 helps us generate the server-side certificate, but when it comes to the client-side certificate, we are on our own.
Of course, we can use the Makecert tool to create a self-signed certificate. Following are the steps to generate a client
certificate using Makecert, package the certificate using PVK2PFX, and configure the same in Internet Explorer.

1.	 Before we generate the client certificate, we need a root certificate on which we will base
our client certificate. In an ideal world, this will be a CA like VeriSign. In this scenario,
though, we will create the root certificate using Makecert, as shown in Listing 9-6. The
command-line parameter of cy is what makes this certificate a special CA certificate.

Listing 9-6.  Makecert Command to Create a Root Certificate 

makecert.exe -r -n "CN=WebApiCA" -pe -sv WebApiCA.pvk -a sha256 -cy authority WebApiCA.cer 

 Note■■  T o run the Makecert commands, use the Developer command prompt for Visual Studio 2012, available
under All Programs ➤ Microsoft Visual Studio ➤ Visual Studio Tools. If you use Visual Studio 2010, it will be a Visual
Studio command prompt. In either case, you must run the prompt as an administrator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

176

2.	 Type in a password when prompted. Once Makecert completes execution successfully,
you will have two files created.

a.	 A PVK file that contains the certificate’s private key. Because this file contains the
private key, this file must be appropriately safeguarded.

b.	 A CER file that contains the public key.

3.	 In Chapter 6, we used Makecert to generate and add the certificate to the local store
directly. In this case, it just generates the certificate files. Because we plan to use this
certificate as the root certificate for the client certificates, this certificate needs to be sent
to the users and ultimately get added to the certificate store on their machines. We need
to add this certificate to the Trusted Root CA in both IIS and the machine where the client
will run. We can use the Microsoft Management Console (MMC) for this purpose.

a.	 The executable corresponding to MMC is C:\Windows\System32\mmc.exe. You can
also run MMC by typing mmc in the Run box.

b.	 Once MMC is launched, select File ➤ Add/Remove snap-in or press Ctrl+M to bring
up Add or Remove Snap-ins.

c.	 Select Certificates from the Available snap-ins list view on the left and click Add.

d.	 In the resulting dialog box, choose the Computer account radio button, click Next,
select Local computer, and click Finish.

e.	 Finally, click OK to see the certificates on your computer, as shown in Figure 9-8.

Figure 9-8.  Microsoft Management Console

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership FaCtOrs

177

f. Expand the tree view on the left and go to Trusted Root Certification Authorities.
Right-click the Certificates folder and select All Tasks. . . ➤ Import. Select the
WebApiCA.CER and complete the process to add the certificate to the Trusted
Root CA.

You need to perform these steps only in IIS (server). Of course, you can do the same on client machines as well,
but there is an additional step involved in creating and packaging client certificates.

4. Next, we need to create the client certificate. We will use the same Makecert command that
we used to create the root certificate. The command to run is shown in Listing 9-7.

Listing 9-7. Makecert Command to Create a Client Certificate

makecert.exe -iv WebApiCA.pvk -ic WebApiCA.cer -n "CN=jqhuman" -pe -sv jqhuman.pvk -a sha256 -sky
exchange jqhuman.cer -eku 1.3.6.1.5.5.7.3.2

5. Makecert again creates two files: one each for the public and private key. As a general rule,
all private keys must be safely kept and only public keys can be distributed. The client
certificate CN=jqhuman is issued by WebApiCA. The parameter of eku is what makes this
certificate a client certificate. If you plan to use the web API from a browser, say JQuery
calling the web API, unless the certificate is specifically marked as a client certificate the
browser will not send the certificate to IIS. Basically, it will not work!

6. A client certificate has been created, but the certificate needs packaging for delivery.
PVK2PFX is another command-line tool we will use to package the certificate (public
and private keys) into a Personal Information Exchange (.pfx) file. See Listing 9-8 for the
command to use to create the .pfx file.

Listing 9-8. PVK2PFX Command-Line Tool

pvk2pfx.exe -pvk jqhuman.pvk -spc jqhuman.cer -pfx jqhuman.pfx -po p@ssw0rd!

7. Now, we can send the two files, jqhuman.pfx and WebApiCA.cer, to the user John Q. Human
to be installed into the personal certificate store and Trusted Root CA, respectively. John
can simply double-click the files and provide the password of p@ssw0rd! when prompted
to complete the installation. Note this password is for the .pfx file only and can be different
from the password entered at the time the certificate was generated by Makecert.

8. To verify the client certificate installed successfully, John can open Internet Explorer and
go to Tools ➤ Options, click the Content tab, and click the Certificates button to confirm
the certificate is installed, as shown in Figure 9-9.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

178

Figure 9-9.  Internet Explorer

With the setup complete, if you go directly to an API, say /api/employees from Internet Explorer, nothing
special will appear to have happened. However, Internet Explorer is silently picking the certificate CN=jqhuman
and sending it to IIS.

We configured IIS to require this certificate, so it will fail all the requests without a client certificate. Once the
certificate is received, it verifies that the issuer of the certificate is in the Trusted CA list on the server running IIS.
If all is well, the request goes through to our web API pipeline.

Here is a quick summary of the setup we have accomplished.

1.	 We created a self-signed server certificate using IIS Manager and used it to create an
HTTPS binding.

2.	 We made HTTPS and the client certificate mandatory in IIS.

3.	 We then created a root certificate using Makecert.

4.	 Using this root certificate, we created a client certificate.

5.	 We used the PVK2PFX tool to package the client certificate for distribution.

Ultimately, the end user’s machine’s trusted CA and the server—in this case, the machine running IIS that has
the Trusted CA list—must include our root certificate for this whole thing to work. Additionally, from the client side,
the browser must have the client certificate configured. If you double-click the .pfx file, Windows configures the client
certificate for you automatically.

If you have control over what can be added to the Trusted CA list on the client machines, you can get away with
generating your own client certificates using Makecert, even for production use. Although using certificates issued
by a CA for all production needs is a good practice, our self-signed certificate will work just fine for client certificates.
By providing an individual certificate to a user, we get enhanced security. Because a certificate is an ownership
factor, you can restrict access to the web API only from machines where the certificates are installed. This is the great
differentiating point of ownership-factor-based security over knowledge-factor-based security.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

179

Using an X.509 Certificate in ASP.NET Web API
Finally, we get to write some code to use the client certificate that has come our way. It is really up to us to have the
validations in place and the subsequent process to establish the identity based on the certificate. I generated the client
certificate with the common name representing some kind of an identifier, jqhuman, representing the user John Q. Human.
First, I need a database or a store where I track the certificates I have issued, against which I can validate the client certificate
when it comes in the request. Second, I can go to some other store to get the claims or roles to be associated with this user
identity. With these two, I can establish an authenticated identity with roles or claims that can be used for access control.
I use a message handler here (see Listing 9-9), just as I have demonstrated in previous chapters.

Listing 9-9.  X.509 Client Certificate Message Handler 

public class X509ClientCertificateHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,

CancellationToken cancellationToken)
 {
 var cert = request.GetClientCertificate();
  
 X509Chain chain = new X509Chain();
 chain.ChainPolicy.RevocationMode = X509RevocationMode.NoCheck;
 
 if (chain.Build(cert) && cert.Issuer.Equals("CN=WebApiCA"))
 {
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, cert.Subject.Substring(3)), // ignoring CN=
 };
 
 var principal = new ClaimsPrincipal(new[] { new ClaimsIdentity(claims, "X509") });

 Thread.CurrentPrincipal = principal;

 if (HttpContext.Current != null)
 HttpContext.Current.User = principal;
 
 return await base.SendAsync(request, cancellationToken);
 }
 
 return request.CreateResponse(HttpStatusCode.Unauthorized);
 }
}
 

The client certificate is pulled out of the request using the GetClientCertificate() method. The X509Chain
class is used to validate the certificate by building the chain. In the example, I’m ignoring the revocation list, but in
production that line can be commented out, if a proper list is available. I’m also making sure the issuer of the client
certificate is CN=WebApiCA.

Testing our ASP.NET Web API
If the web API is used from JQuery or something similar that runs under the context of the browser, the browser sends
the client certificate to IIS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

180

Listing 9-10 shows the C# code for a non-browser scenario. The important point to note is I had to set the
callback for server certificate validation and simply return true to get this to work. The main reason is that the server
returns our self-signed certificate. This is a strict no-no for production. A certificate issued by a CA is needed.

Listing 9-10.  C# Client for ASP.NET Web API 

ServicePointManager.ServerCertificateValidationCallback =
(object sender, X509Certificate cer, X509Chain chain, SslPolicyErrors error) =>
{
 �return true; // This is done because we are using a self-signed certificate in the server side,

not production strength
};
 
var client = WebRequest.Create("https://server.com/api/employees/12345") as HttpWebRequest;
var cert = new X509Certificate2(File.ReadAllBytes(@"C:\Users\Me\Certs\TestCert.pfx"), "p@ssw0rd!");
client.ClientCertificates.Add(cert);
 
string response = new StreamReader(client.GetResponse().GetResponseStream()).ReadToEnd(); 

Note■■  I t is possible to combine other authentication methods such as basic authentication, which is a
knowledge-factor-based authentication, with the client certificate, which is an ownership-factor-based authentication,
and make it a strong two-factor authentication. Because the client certificate is based on HTTPS, sending the credentials
in clear text, as needed by basic authentication, poses no security issues. Chapter 14 includes a sample Two-Factor
Authentication (TFA) implementation along this line.

Merits and Demerits of a Client Certificate Mechanism
A client certificate-based authentication is a robust way of authenticating a user. When combined with Windows
privileges, a certificate cannot be shared with others and misuse can be prevented, compared to a password-based
mechanism. No one can prevent you from writing your username and password on a sticky note and handing it to
someone else, but a certificate can be closely guarded by IT systems because it’s a file.

A client certificate mechanism can be combined with other authentication mechanisms, such as basic
authentication, to achieve two-factor authentication for enhanced security.

A certificate needs to be installed on a machine before a web API can be called from that machine. This is a
double-edged sword. It can work to your advantage, if you intend to limit the machines from where the web API
must be accessed. On the other hand, it can get really stifling, restricting the users to use the web API only from those
machines where a client certificate is available. Depending on the needs, this quality of the client certificate can work
for you or against you. On the flip side, the process to set up and maintain the infrastructure supporting the client
certificate is a bit complex and needs support from the IT operations and administration team. Also, a client certificate
piggybacks on HTTPS and hence HTTPS is a must to implement client certificate-based authentication.

Note■■  I t is possible to map a client certificate to an Active Directory account. If implemented, the client certificate
alone is needed to establish the identity with all the Active Directory groups as roles. This topic pertains to IT administration
rather than programming, which is what this book is all about. For that reason, except for this brief mention, there will not
be any detailed coverage.

www.it-ebooks.info

https://server.com/api/employees/12345
http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

181

SAML Tokens
Any security token is an ownership factor. The token might be in computer memory or doing rounds in the network
stream all the time, unlike a certificate that can be saved into a file system as a file. We reviewed the three major
formats of security tokens in Chapter 5, namely the Security Assertion Markup Language (SAML) token, the Simple
Web Token (SWT), and the JSON Web Token (JWT). SAML is XML-based and has SOAP affinity. Typically, it travels as
part of the payload of a SOAP web service rather than in HTTP headers or the body of RESTful service messages.

In Chapter 7, we built a custom Security Token Service (STS) with a WS-Trust endpoint capable of issuing SAML
tokens. In this chapter, we get a SAML token from that STS and will use it from ASP.NET Web API. When a RESTful
service is being built from the ground up along with the security infrastructure, it is likely that RESTful-friendly tokens
like SWT or JWT will get used. This is not a hard and fast rule, though.

The organizations that have already invested in SAML token issuing infrastructure will want to leverage the
existing infrastructure with the new RESTful services they would like to build using the great ASP.NET Web API
framework. That is the reason I provide this section on using SAML tokens with ASP.NET Web API. We look at web
tokens in the next chapter, which is dedicated exclusively to SWT and JWT.

Figure 9-10 illustrates the overall setup. The STS used in this chapter will be straight from Chapter 7. It exposes
a WS-Trust endpoint that issues a token in the RSTR response for the incoming RST request. STS can support both
WS-Federation for passive clients and WS-Trust directly for active clients. In our case, we do not deal with passive
clients; hence, the STS that we created will support WS-Trust only and more specifically, only the token issuance.

WS-Trust over HTTP
[Message Security only]

Client

C# Console App

C# Console App

HTTP
[SAML token in
HTTP header

ASP.NET Web API

Trust Relationdhip
Web API
trusts STS

http://localhost:6000/MySTS
[Issue]

UserName
Token

SAML
Token

RSTR

Relaying
Party App

Security
Token

Service
RST

SAML
Token

Figure 9-10.  Using a SAML token with ASP.NET Web API

In this book, I do not intend to cover the topic of building a production-strength STS. Coverage is limited
to building a basic STS, from which a token can be requested by the client (which is a console application)
and ultimately presented as a credential to an ASP.NET Web API. The assumption here is that your IT security
infrastructure already has something equivalent, such as an Active Directory Federation Services endpoint or a
custom STS that you might have purchased in the past.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

182

Implementing the Client Console Application
To implement the client console application, I build on the code from Chapter 7 that makes an RST request to the
STS and gets the SAML token from the RSTR response. The GetToken() method described in the section “Requesting
a Token from a Custom STS” in Chapter 7 does this and returns the token as a string. I modify the method to return
a Tuple of a SAML token and the proof key. I use System.Net.Http.HttpClient to make a GET request to our web
API, as shown in Listing 9-11. In this request, I put the SAML token as a base64-encoded string in the Authorization
request header, using a custom scheme that I have named Saml. I use the proof key to sign the SAML token and send
the signature separately in another header called X-ProofSignature.

Listing 9-11.  Modifications to the GetToken Method 

private static Tuple<string, byte[]> GetToken()
{
 var binding = new WS2007HttpBinding(SecurityMode.Message);
 
 binding.Security.Message.ClientCredentialType = MessageCredentialType.UserName;
 binding.Security.Message.NegotiateServiceCredential = true;
 binding.Security.Message.EstablishSecurityContext = false;
 
 var address = new EndpointAddress(new Uri(@"http://localhost:6000/MySTS"),
 new DnsEndpointIdentity("MySTS"));
 
 WSTrustChannelFactory factory = new WSTrustChannelFactory(binding, address);
 factory.TrustVersion = TrustVersion.WSTrust13;
 
 factory.Credentials.ServiceCertificate.Authentication.CertificateValidationMode =

X509CertificateValidationMode.None;
 factory.Credentials.ServiceCertificate.Authentication.RevocationMode =

X509RevocationMode.NoCheck;
 factory.Credentials.UserName.UserName = "jqhuman";
 factory.Credentials.UserName.Password = "jqhuman"; // has to be the same as username in our example
 
 WSTrustChannel channel = (WSTrustChannel)factory.CreateChannel();
 
 var request = new RequestSecurityToken(System.IdentityModel.Protocols.WSTrust.RequestTypes.Issue)
 {
 AppliesTo = new EndpointReference("http://my-server.com")
 };
 
 RequestSecurityTokenResponse response = null;
 var token = channel.Issue(request, out response) as GenericXmlSecurityToken;
 
 var proofKey = response.RequestedProofToken.ProtectedKey.GetKeyBytes();
 
 return new Tuple<string,byte[]>(token.TokenXml.OuterXml, proofKey);
} 

The concept of checking the ownership of a SAML token using a proof key is part of the WS-Trust specification,
which is for SOAP. In REST-based services, when a SAML token has to be used it is generally used as a bearer token
rather than as a holder-of-key token. However, there is no hard and fast rule that holder-of-key tokens must not be

www.it-ebooks.info

http://localhost:6000/MySTS
http://my-server.com/
http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

183

used with ASP.NET Web API. The process is slightly more involved and has to be customized through the use of the
X-ProofSignature custom HTTP header, but I decided to include the proof key validation. It is very easy to drop the
same if you intend to deal with only bearer tokens. If you want the STS to issue a bearer token, ask for it explicitly by
specifying the KeyType of KeyTypes.Bearer when you issue an RST. The following steps show how to complete the
client application implementation.

1.	 Modify the GetToken method from Chapter 7 to return the SAML token (XML) as a string
and the proof key as a byte array in a Tuple. See Listing 9-11. The modifications are shown
in bold type.

2.	 Call the GetToken method from the Main method and receive the SAML token as XML and
the proof key as a byte array, as shown in Listing 9-12.

Listing 9-12.  Client Application 

static void Main(string[] args)
{
 Tuple<string, byte[]> token = GetToken();
 
 string saml = token.Item1;
 byte[] proofKey = token.Item2;
 
 // Code to use HttpClient goes here
} 

3.	 Use HttpClient to make an HTTP GET to ASP.NET Web API, passing the SAML token in
the Authorization header (using a custom scheme that I call Saml). See Listing 9-13. Using
the proof key returned by the GetToken method call, create an HMAC using the SHA256
algorithm for the SAML token XML and stuff it in the X-ProofSignature header before the
call to ASP.NET Web API.

Listing 9-13.  Calling ASP.NET Web API 

using (HttpClient client = new HttpClient())
{
 byte[] bytes = Encoding.UTF8.GetBytes(saml);
 var header = new AuthenticationHeaderValue("Saml", Convert.ToBase64String(bytes));
 client.DefaultRequestHeaders.Authorization = header;
 
 using (HMACSHA256 hmac = new HMACSHA256(proofKey))
 {
 byte[] signatureBytes = hmac.ComputeHash(bytes);
 client.DefaultRequestHeaders.Add("X-ProofSignature", Convert.ToBase64String(signatureBytes));
 }
 
 var httpMessage = client.GetAsync("http://localhost:54400/api/employees/12345")
 .Result;
 if (httpMessage.IsSuccessStatusCode)
 Console.WriteLine(httpMessage.Content.ReadAsStringAsync().Result);
}
 

www.it-ebooks.info

http://localhost:54400/api/employees/12345
http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

184

Note■■  A t this point, the client console application has no visibility to the proof key inside the SAML token because
the token is encrypted. HMAC is created using the proof key received in the RSTR from the STS. Also, note the client
application computes the HMAC for the SAML XML and sends only the HMAC in the X-ProofSignature header. The proof
key is never sent to the relying party (ASP.NET Web API).

Accepting a SAML Token in ASP.NET Web API
The client application, a console application in this case, requests a SAML token from our custom STS, stuffs the
token and the signature it computed using the proof key in the Authorization and the custom headers, respectively,
and makes a call to ASP.NET Web API. The following steps show how to implement the code in ASP.NET Web API to
accept the SAML token as a client credential, validate it, extract the claims out, and establish the user identity.

1.	 In the ASP.NET Web API side, we use a message handler as shown in Listing 9-14 to read,
validate the token, extract the claims out, and use the same to build a principal and set it
in Thread.CurrentPrincipal. If there is no authorization header or the scheme does not
match the name Saml, we don’t send an unauthorized response. We simply do not set the
Thread.CurrentPrincipal and any access control down the line depending on this will
fail. This handler can short-circuit the pipeline and send an unauthorized response, if that
is what is desired.

Listing 9-14.  Message Handler to Read the SAML Token 

public class AuthenticationHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,

CancellationToken cancellationToken)
 {
 var encoding = Encoding.GetEncoding("iso-8859-1");
 var headers = request.Headers;
 
 if (headers.Authorization != null && headers.Authorization.Scheme.Equals("Saml"))
 {
 string token = encoding.GetString(
 Convert.FromBase64String(headers.Authorization.Parameter));
 
 // Code to use the token goes here
 }
 
 return await base.SendAsync(request, cancellationToken);
 }
} 

2.	 It is possible to parse the SAML just like any other XML, but there is a better alternative.
We can use a security token handler to read and validate the token. Of course, we need
to specify the X.509 certificate used by the STS as encrypting credentials so that the token
handler can decrypt it correctly. In Listing 9-15, I use the certificate CN=RP. On a machine
running STS, this certificate will contain only the public key. The machine running the
web API must have the certificate with the private key. I reuse the extension method
ToCertificate that we created in Chapter 6 here to read the certificates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

185

Listing 9-15.  Reading a SAML Token 

using (var stringReader = new StringReader(token))
{
 using (var samlReader = XmlReader.Create(stringReader))
 {
 var tokenHandlers = SecurityTokenHandlerCollection

.CreateDefaultSecurityTokenHandlerCollection();
 SecurityTokenHandlerConfiguration config = tokenHandlers.Configuration;
 
 var securityTokens = new List<SecurityToken>()
 {
 new X509SecurityToken("CN=RP".ToCertificate())
 };
 
 config.ServiceTokenResolver = SecurityTokenResolver.CreateDefaultSecurityTokenResolver(

securityTokens.AsReadOnly(), false);
 config.CertificateValidator = X509CertificateValidator.None; // See the following caution
 config.IssuerTokenResolver = new X509CertificateStoreTokenResolver(StoreName.My,

StoreLocation.LocalMachine);
 config.IssuerNameRegistry = new TrustedIssuerNameRegistry();
 config.AudienceRestriction.AllowedAudienceUris.Add(new Uri("http://my-server.com"));
 
 SecurityToken samlToken = tokenHandlers.ReadToken(samlReader);
 
 // Proof checking logic goes here
 
 }
} 

Caution■■  I n my examples here, I use self-signed certificates with both STS and the relying party (ASP.NET Web API).
To ensure they work, I bypass the check, as I have done in other places. The following line bypasses the certificate
validation.

config.CertificateValidator = X509CertificateValidator.None;

It is not production strength in most cases, and you should consider using it with care as you design the security mechanism.

3.	 To check the token ownership using the proof key, compute HMAC-SHA256 just like the
client and compare the HMAC thus computed with the one sent by the client. If they
match, the client is the rightful owner of the token. Note the proof key used to compute
the HMAC is retrieved from the token. The client application uses the proof key from the
RSTR, as sent by STS. So, if this client is the entity that received the token directly from STS,
it will have received the same proof key that is baked into the SAML token. That is the basis
for the ownership checking. After ensuring the token ownership, validate the token and
extract out the identity, as defined by the claims contained in the token. Create a principal
object for this identity and set it in Thread.CurrentPrincipal (see Listing 9-16).

www.it-ebooks.info

http://my-server.com/
http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

186

Listing 9-16.  Proof Checking 

bool isOwnershipValid = false;
if (headers.Contains("X-ProofSignature"))
{
 string incomingSignature = headers.GetValues("X-ProofSignature").First();
  
 var proofKey = (samlToken.SecurityKeys.First() as InMemorySymmetricSecurityKey)

.GetSymmetricKey();
 
 using (HMACSHA256 hmac = new HMACSHA256(proofKey))
 {
 byte[] signatureBytes = hmac.ComputeHash(Encoding.UTF8.GetBytes(token));
 
 isOwnershipValid = incomingSignature
 .Equals(
 Convert.ToBase64String(signatureBytes),
 StringComparison.Ordinal);
 }
}
 
if (isOwnershipValid)
{
 var identity = tokenHandlers.ValidateToken(samlToken).FirstOrDefault();
 
 var principal = new ClaimsPrincipal(new[] { Identity });

 Thread.CurrentPrincipal = principal;

 if (HttpContext.Current != null)
 HttpContext.Current.User = principal;
}
 

4.	 As the last step, we use the TrustedIssuerNameRegistry class that we used in Listing 9-15.
The most fundamental element of brokered authentication is the trust. ASP.NET Web
API, which is the replying party application, trusts our custom STS and hence the
tokens issued by the same STS. When a token is presented to ASP.NET Web API, it must
ensure the token is minted by our custom STS. This logic is implemented in the class
TrustedIssuerNameRegistry, which inherits IssuerNameRegistry. The logic just looks at
the subject name of the X.509 certificate to ensure the token is issued by our custom STS.
See Listing 9-17.

Listing 9-17.  TrustedIssuerNameRegistry 

public class TrustedIssuerNameRegistry : IssuerNameRegistry
{
 private const string THE_ONLY_TRUSTED_ISSUER = "CN=MySTS";
 
 public override string GetIssuerName(SecurityToken securityToken)
 {
 using (X509SecurityToken x509Token = (X509SecurityToken)securityToken)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Ownership FaCtOrs

187

 {
 string name = x509Token.Certificate.SubjectName.Name;

 return name.Equals(THE_ONLY_TRUSTED_ISSUER) ? name : String.Empty;
 }
 }
}

Active Directory Federation Services
Active Directory Federation Services (AD FS) is meant to simplify access to systems and applications across security
realms. Take the scenario of an employee of Company A who has a Windows account within the AD of Company A.
If this employee wants to access an application of the partner company Company B, it becomes a trust problem. The
application in Company B trusts only the AD of Company B. The employee of Company A has the AD credentials only
in the AD of Company A.

AD FS helps us solve such problems across organizational boundaries. Using AD FS, the employee of Company A
can seamlessly access the application in Company B with his Company A Active Directory credentials, as long as he is
authorized to do so.

AD FS typically uses an AD as the identity provider and issues SAML tokens. As you know, tokens are all about
claims. ADFS issues tokens that contain claims, which an application uses to authenticate and authorize a user.

AD FS is not just for federation across organizational boundaries. Even outside of the federation capabilities,
it is possible to simply set up an AD FS endpoint that issues tokens for incoming Windows credentials within the
boundaries of an organization. By developing applications that depend on claims from the AD FS–issued tokens,
single sign-on (SSO) can be achieved with browser-based applications within an organization.

We deal with ASP.NET Web API, which is all about active clients. Suppose an organization that has invested in AD
FS would like to leverage AD FS–issued tokens with a web API as well. AD FS 2.0 does support a WS-Trust endpoint
exactly the same as our custom STS. Well, our custom STS issues a token with just a name claim. But AD FS 2.0 can
issue a SAML token with claims representing anything related to the AD account, such as AD groups the user is a part
of, depending on how claims mapping is configured in AD FS.

Listing 9-18 shows the code to obtain a SAML token from an AD FS 2.0 WS-Trust endpoint.

Listing 9-18. SAML Token from AD FS 2.0 WS-Trust

private static string GetTokenFromAdfs20()
{

 var binding = new WS2007HttpBinding(SecurityMode.TransportWithMessageCredential);

 binding.Security.Message.ClientCredentialType = MessageCredentialType.UserName;
 binding.Security.Message.NegotiateServiceCredential = true;
 binding.Security.Message.EstablishSecurityContext = false;

 var address = new EndpointAddress(new Uri(
@"https://yourserver.com/adfs/services/trust/13/usernamemixed"));

 WSTrustChannelFactory factory = new WSTrustChannelFactory(binding, address);
 factory.TrustVersion = TrustVersion.WSTrust13;

 factory.Credentials.UserName.UserName = "You Active Directory User Id";
 factory.Credentials.UserName.Password = "Corresponding password";

www.it-ebooks.info

https://yourserver.com/adfs/services/trust/13/usernamemixed
http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

188

 WSTrustChannel channel = (WSTrustChannel)factory.CreateChannel();
 
 var request = new RequestSecurityToken(System.IdentityModel.Protocols.WSTrust.RequestTypes.Issue)
 {
 AppliesTo = new EndpointReference("https://relyingparty"),
 KeyType = KeyTypes.Bearer
 };
 
 RequestSecurityTokenResponse response = null;
 var token = channel.Issue(request, out response) as GenericXmlSecurityToken;
 
 return token.TokenXml.OuterXml;
}
 

The code in Listing 9-18 is almost identical to the code we used to get a token from our custom STS. The reason
for the similarity is that we are dealing with the same specification, which is WS-Trust. However, there are two
differences in the way AD FS is used.

1.	 I use HTTPS and hence specify the same in the security mode, while creating the
ws2007HttpBinding.

2.	 When this AD FS endpoint was configured, no encryption certificate was provided. For
that reason, the token issued cannot be a holder-of-key token but can only be a bearer
token. KeyType of the request (RST) reflects this fact.

This section on AD FS is just to prove the point that using the work we have already done, you will be able to
obtain SAML tokens from the existing AD FS within your organization and use the same to secure ASP.NET Web API.
A web API will not care how you mint the SAML token, whether from a custom STS or from an AD FS 2.0 endpoint, as
long as it is set up to rely on one of these services correctly with all the cryptographic accessories intact to validate the
signature and decrypt the token.

Merits and Demerits of SAML Tokens
The main advantage of using a SAML token to secure ASP.NET Web API is that it provides the opportunity to reuse
existing token issuance infrastructure such as AD FS. The Windows Identity Foundation (WIF) classes support getting
a SAML token through WS-Trust as well as parsing and validating SAML tokens, all out of the box. With the .NET
Framework 4.5, WIF classes have been absorbed into the core namespaces.

The main downside to using SAML tokens using WS-Trust infrastructure is that this step forces you to go in the
opposite direction of embracing a technology such as HTTP, which finds support in almost any platform. SAML is a
standard and so is WS-Trust, which is the typical protocol used for requesting SAML tokens.

Yet, forcing clients to talk to WS-Trust endpoints to get a SAML token reduces the reach of the web API. A client
that doesn’t have the ability to talk WS-Trust protocol will pretty much not be able to use our web API. Reusing the
existing WS-Trust endpoints is a major motivation for using SAML tokens. However, if there is a huge client base that
lacks WS-Trust capabilities, it is better to use a web token format such as SWT or JWT instead of creating a token
issuance authority capable of issuing SAML tokens outside of WS-Trust.

Also, SAML is XML and hence SAML tokens tend to get heavier. The web tokens such as SWT or JWT tend to be
better fits for RESTful services than SAML.

www.it-ebooks.info

https://relyingparty/
http://www.it-ebooks.info/

Chapter 9 ■ Ownership Factors

189

Summary
Authentication is the process of discovering the identity of a user and verifying the same through validating the
user-supplied credentials against an authority. The credential can be a knowledge factor that the user knows, an
ownership factor that the user owns such as a token or an X.509 certificate, or an inherence factor that the user is.
I covered three ownership factors in this chapter: PSKs (also known as API keys), X.509 client certificates, and
SAML tokens.

Unlike a knowledge factor that can be easily passed on to others intentionally or otherwise, it is comparatively
difficult to do the same with an ownership factor. For example, an X.509 client certificate installed in the certificate
store of a machine is much safer, and exporting it is generally beyond the technical prowess of the typical business
user. Also, Windows-based privileges can be used to make the sharing harder or impossible.

The most basic implementation of a PSK involves sending the key as is in the request. In this case, the key acts
as both the identifier and the credential. This implementation requires transport-level security. An alternative to the
basic implementation is using two keys, a public key and a private key. The public key is sent in the request and acts
as the identifier of the user. The private key is not sent; instead, an HMAC computed for some of the key elements of
the request using the private key is sent to prove the authenticity of the user owning the private PSK to the service.
Because the private key is not sent in the message, the PSK implementation using key pairs does not need HTTPS.

An X.509 certificate is an identity. When a web server sends the public keys of an X.509 certificate to a client as
part of the TLS handshake in HTTPS, it is used as a server credential. TLS does allow a client such as a web browser to
send an X.509 certificate to the server to prove the identity of the user using the client. Using an X.509 certificate as a
client credential with a web-hosted ASP.NET Web API running in IIS is mainly about configuring IIS to use HTTPS and
require a client certificate. When configured correctly, a web browser automatically sends the user’s X.509 certificate
to the web API. As a developer, you need to validate the certificate once it is made available to you in the request
object in the ASP.NET Web API pipeline and establish a principal corresponding to the client certificate.

A security token is also an ownership factor. There are three major formats: SAML, SWT, and JWT. I covered
SAML in this chapter. The custom STS built in Chapter 7 is used as the token issuer to implement a SAML token-based
security in ASP.NET Web API. A symmetric proof key is used to demonstrate the token ownership. Because a custom
STS and an STS endpoint of AD FS can both use the WS-Trust protocol, I concluded the chapter by showing how to
request and obtain a SAML token, similar to how it was with the custom STS example.

The web tokens—both SWT and JWT—are ownership factors as well, just like any other security token. But the
web tokens are a better fit to RESTful services. For this reason, I dedicate Chapter 10 to them.

www.it-ebooks.info

http://www.it-ebooks.info/

191

Chapter 10

Web Tokens

A security token is a container of claims packaged for secure transportation over the network. As the carrier of claims,
security tokens have an important role to play in the claims-based security model covered in Chapter 5. A token
issuance authority issues a token to a client application after authenticating the user credentials. The client
application then presents this token to the relying party (RP) application as a user credential. The RP application
verifies the token and establishes the identity for the user based on the claims contained in the token.

A security token is often short-lived compared to other ownership factors such as a preshared key or an X.509
certificate. Yet it is an ownership factor because the client application must own or possess the token to present it to
an RP application to get authenticated and authorized. So, this chapter is an extension of the previous chapter on
ownership-factor-based security.

A security token is fundamentally a bunch of bytes but based on the format, there are three major types: Security
Markup Assertion Language (SAML) tokens, Simple Web Token (SWT), and JSON Web Token (JWT). The SAML
tokens I covered in the previous chapter are XML based, closely related to SOAP and WS-* protocols. The endpoint
of the token issuance authority, as defined in the WS-Trust specification, is a Security Token Service (STS). A client
that needs a token from an STS makes a request for security token (RST) to STS and gets back the token in the request
for security token response (RSTR), in accordance with the WS-Trust specification. I covered WS-Trust and STS in
Chapter 7.

A SWT (pronounced swot) is just a collection of name–value pairs that are HTML form encoded, whereas a JWT is
JSON-based. They are both web tokens because they are designed for the web (read HTTP). Compared to XML-based
SAML, these tokens tend to be compact and hence better suited to travel in an HTTP header. For this reason, the
web tokens are favored over SAML tokens in the world of REST, where ASP.NET Web API lives. Another important
characteristic that differentiates the web tokens from SAML tokens is that the web tokens are bearer tokens and are
typically used in the HTTP authorization header through the bearer scheme.

The rough equivalent for WS-Trust in the REST world is OAuth 2.0, the protocol that is typically used to request
and obtain web tokens. OAuth 2.0 does not mandate a SWT or JWT to be used as token formats. However, in practice,
when the OAuth 2.0 specification is used the tokens used are typically web tokens. I cover OAuth 2.0 in the next three
chapters. Because of the web tokens’ affinity to the REST world, I cover them here exclusively in this chapter.

Simple Web Token
Simple Web Token: The name says it all. It is a token, it is for the web (read HTTP), and it is simple! Because of the
simplicity and compactness, a SWT is a good choice for ASP.NET Web API. Using OAuth 2.0, a client application can
make a request for a SWT and use the token issued as a bearer token to authenticate to ASP.NET Web API. A bearer
token gets sent in the HTTP authorization header through a bearer scheme. An example for the HTTP authorization
header using a bearer scheme is Authorization: Bearer <base64 encoded token bytes>.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

192

Anatomy of a SWT
In this section, I focus on explaining the anatomy of a SWT. A dissection, however, will not be needed, because what is
inside a SWT is there for all to see. It is a simple token, after all!

A SWT is just HTML form encoded name–value pairs. The token issuer and the RP decide on the exact names
and the values. However, there are a few name–value pairs that are important for a token to be functional: Issuer,
Audience, and ExpiresOn. See Listing 10-1 for a sample SWT.

Listing 10-1.  Sample SWT 

Audience%3Dhttp%3A%2F%2Fserver.com%2Fapi%26ExpiresOn%3D1255913549%26Issuer%3Dhttps%3A%2F%2Fmyservice.
accesscontrol.windows.net%2F%26role%3DAdmin%2CUser%26HMACSHA256%3DsT7Hr9z%2B3t1oDFLpq5GOToVsu6Dyxpq
7hHsSAznmwnI%3D
 

The SWT in Listing 10-1 is not very pleasing to the eyes because it is encoded, but it is basically a bunch of
name–value pairs. Listing 10-2 shows how it looks after I decode it, highlight field names, and put each name–value
pair on a new line.

Listing 10-2.  SWT Decoded Content 

Audience=http://server.com/api&
ExpiresOn=1255913549&
Issuer=https://myservice.accesscontrol.windows.net/&
role=Admin,User&
HMACSHA256=sT7Hr9z+3t1oDFLpq5GOToVsu6Dyxpq7hHsSAznmwnI=
 

The following list explains each of the fields in Listing 10-2 in detail.

1.	 Audience is the RP application. When you use a SWT with ASP.NET Web API, the audience
field will denote your ASP.NET Web API. A token issuing authority can issue tokens for
multiple RPs. An RP application will honor only the tokens issued specifically to it.

2.	 ExpiresOn is the token expiration timestamp. For obvious reasons, tokens don’t live forever
and there is an expiry date and time. Some countries have daylight saving time. When the
time is adjusted for this purpose, it can impact the token lifetime it was issued just before
the time change. Also, different countries follow different formats. For example, 02/06 is
June 2 in some countries, whereas in other countries it indicates February 6. To avoid this
confusion and to simplify the representation, we follow UNIX time, which is the number of
seconds elapsed since midnight of January 1, 1970 Universal Coordinated Time (UTC).

3.	 Issuer is the token issuing authority. A token and hence the claims it contains has no face
value if it is from an issuer who the RP application does not trust. If the issuer is considered
trustworthy, then the token has value, just like a currency note. A currency note can be
simply a piece of crumpled, soiled paper, yet it has the power to buy things because it was
issued by someone that people trust. It is important to note here that an RP must honor a
SWT only if is it issued by an issuer it trusts and the token is issued specifically to it. For the
first check the issuer field is important, whereas for the second check the audience field is
important.

4.	 Role in Listing 10-2 is a custom name–value pair. It indicates the roles that the user is part
of, mostly likely to be used in access control. A claim is also a name–value pair and hence
it is very convenient to map a field’s name to a claim type and value to a claim value. There
can be more than one custom name–value pair.

www.it-ebooks.info

http://server.com/api
https://myservice.accesscontrol.windows.net/
http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

193

5.	 HMACSHA256 is the most important name–value pair of all. As defined by the SWT
specification, this is always the last name–value pair and the only mandatory name–value
pair. The value of this name–value pair is the HMAC of all the other name–value pairs in
the token. An HMAC is basically a code generated by hashing a message in combination
with a key. In the case of a SWT, the name–value pairs in the token except HMACSHA256
are used for creating the HMAC. The key used in HMAC generation is a shared symmetric
key that only the issuer and the RP application know. The purpose of an HMACSHA256
name–value pair is to ensure token integrity and authenticity. When the RP application
receives the token, it computes the HMAC code and compares it with the value of the
HMACSHA256 name–value pair. Matching values mean the token has not been tampered
with in transit. The only other entity that could have created the HMAC the same as the
RP application is the entity that holds the same key, which is the token issuer. This way it
ensures token authenticity as well. However, a SWT does not ensure confidentiality of the
token content. Sure enough, a SWT can be encrypted but that is not something defined by
the SWT specification.

Caution■■  T he issuer and the RP to which a token is minted share a secret 256-bit key. Because the key is shared—in
other words, the same key is used at both ends—it is a symmetric key. Because a symmetric key is known to two
parties, the risk is twice as high that it will be compromised. For this reason, it is important to rotate symmetric keys by
discarding a key after a certain time period and generating a new one.

Using a SWT in a Console Application
If you are reading this book on ASP.NET Web API security, it is highly likely that you are interested in securing
ASP.NET Web API. Yet, I demonstrate a SWT using a console application. A console application is faster to write, run,
debug, and understand. Besides, I do not believe in repeating the same code in the book in a different context. In
Chapter 5, the section “Implementing Claims-Based ASP.NET Web API” clearly illustrates how to use claims using
Windows Identity Foundation (WIF) classes in ASP.NET Web API. What is not implemented there is the code to deal
with tokens and extract the claims. In this section, I cover that missing piece, of course from a SWT perspective.
Hence, to keep the focus on a SWT, which is the core topic of the discussion here, I use a console application. The
token issuer and the RP are all modeled as simple C# classes. In practice, these entities will be applications and not
classes, just to state the obvious. The following are the four classes I cover in this section.

1.	 Program class with the Main method acting as the client application.

2.	 TokenIssuer class with the GetToken method that issues a SWT, which is just a string.

3.	 RelyingParty class has two methods.

a.	 The Authenticate method that accepts the token and establishes the identity based
on the claims in the token.

b.	 TheMethodRequiringAuthZ method, as the name indicates, is an access-controlled
method. The client application is allowed or denied the permission to call this
method, based on the claims in the token.

4.	 SimpleWebToken class, which implements the SWT specification.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

194

The Program Class
The Main method of the Program class of the console application acts as the client application. It calls the
GetToken method on the TokenIssuer object and presents the token to the RelyingParty object and calls the
TheMethodRequiringAuthZ method, as shown in Listing 10-3.

Listing 10-3.  Client Application 

class Program
{
 static void Main(string[] args)
 {
 // Token issuer
 TokenIssuer issuer = new TokenIssuer();
 
 // Relying party app
 RelyingParty app = new RelyingParty();
 
 // A client of the relying party app gets the token
 string token = issuer.GetToken("MyRelyingPartApp", "jqhuman:opensesame");
 
 // With the token, client now presents the token to Authenticate()
 // and calls the access protected method
 app.Authenticate(token);
 app.TheMethodRequiringAuthZ();
 }
} 

The TokenIssuer Class
There are two methods in the TokenIssuer class: One is GetToken, which returns a SWT, and the second is
GenerateKey, which generates a 256-bit key that can be used as the shared secret key by the TokenIssuer and
RelyingParty. Listing 10-4 shows the GenerateKey method. I do not use this method in the illustration here; I just use
a hard-coded key instead. I do show the code for key generation for the sake of completeness.

The GenerateKey() method generates and returns a 256-bit key using RNGCryptoServiceProvider. In practice,
an issuer must store the generated key against the audience for later use to sign the generated token, but I don’t do
that here because I use a hard-coded key for illustration.

Listing 10-4.  GenerateKey Method 

public class TokenIssuer
{
 public string GenerateKey(string audience)
 {
 using (var provider = new RNGCryptoServiceProvider())
 {
 byte[] secretKeyBytes = new Byte[32];
 provider.GetBytes(secretKeyBytes);
 
 return Convert.ToBase64String(secretKeyBytes);
 }
 }
} 

f
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

195

Note■■  T here is no mandate that a token issuing authority must also issue the shared secret key. It can be some other
entity as well as the RP application. In the case of asymmetric keys involving X.509 certificates, the certificates are issued
by a CA, which is different from an RP as well as an issuing authority. In the case of a SWT, the key is a shared symmetric
key. There is not a lot of value in getting it from a third party and hence the issuing authority typically generates one.

Next up is the GetToken method, shown in Listing 10-5. It takes in two parameters: an audience and the
credentials. An audience or the RP is needed so that the correct shared key corresponding to the RP is picked up
for signing the token. The reason for passing in the credentials is obvious. The token is issued only if the credentials
passed in are authentic. However, for the purpose of this example, I totally ignore both parameters and use a
hard-coded key. The GetToken() method creates a new SWT, adds a few hard-coded claims, and sends back the
string representation of the token.

Listing 10-5.  TokenIssuer GetToken Method 

public class TokenIssuer
{
 public string GetToken(string audience, string credentials)
 {
 // TODO - Authenticate credentials here
 // TODO - Based on the audience passed in, pick the shared key from key store
 // Just hard-coding a key here
 string key = "qqO5yXcbijtAdYmS2Otyzeze2XQedqy+Tp37wQ3sgTQ=";
 SimpleWebToken token = new SimpleWebToken(key)
 { Issuer = "TokenIssuer" };
 token.AddClaim(ClaimTypes.Name, "jqhuman");
 token.AddClaim(ClaimTypes.Email, "jqhuman@somewhere.world");
 token.AddClaim(ClaimTypes.Role, "Developer");
 token.AddClaim(ClaimTypes.Role, "Administrator");
 
 return token.ToString();
 }
} 

The RelyingParty Class
RelyingParty accepts the token as a credential for authentication. It accepts the token through the Authenticate()
method. The first thing it does with the token in the form of a string is to call the static method Parse(). If everything
goes well with parsing, a SWT is created out of this string. The claims contained in the token are used to create a
ClaimsIdentity and then a ClaimsPrincipal, which is set to Thread.CurrentPrincipal. Thus, as part of the call to
the Authenticate() method, a SWT is read and validated, the claims are parsed out, and an identity is established
based on this set of claims.

The RelyingParty class has a TheMethodRequiringAuthZ() method that is access controlled. I use
PrincipalPermission to look for a specific role of Developer, which is not as good as using claims-based access
control, but will help keep the code lean and the focus on the core topic of a SWT. See Listing 10-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

196

Listing 10-6.  RelyingParty Class 

public class RelyingParty
{
 // RelyingParty and TokenIssuer share the secret key (symmetric key)
 private string key = "qqO5yXcbijtAdYmS2Otyzeze2XQedqy+Tp37wQ3sgTQ=";
 
 public void Authenticate(string token)
 {
 try
 {
 SimpleWebToken swt = SimpleWebToken.Parse(token, key);
 Console.WriteLine(swt.ToString());
 
 // Now, swt.Claims will have the list of claims
 swt.Claims.ToList().ForEach(c => Console.WriteLine("{0} ==> {1}", c.Type, c.Value));
 
 Thread.CurrentPrincipal = new ClaimsPrincipal(new[] { new ClaimsIdentity(swt.Claims, "SWT") });
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 
 [PrincipalPermission(SecurityAction.Demand, Role = "Developer")]
 public void TheMethodRequiringAuthZ()
 {
 Console.WriteLine("Remember what uncle Ben said . . .");
 Console.WriteLine("With great power comes great responsibility");
 }
} 

Caution■■   When creating the ClaimsIdentity, the second parameter of “SWT” that appears to be innocuous and
rather unimportant is indeed very important in the .NET Framework 4.5. Without this, the IsAuthenticated property of
the identity remains false and all your authorization will fail for no obvious reasons.

The SimpleWebToken Class
Last but not the least, I show you the code for SimpleWebToken. I intentionally stay away from WIF-related
classes to keep the focus on a SWT. The preceding TokenIssuer class is not a subclass of SecurityTokenService.
SimpleWebToken does not inherit from SecurityToken either. There is no real reason other than standardization or
uniformity to use WIF classes for this. SimpleWebToken is a large class, which makes it difficult to show all the lines of
code in one listing. For this reason, I divide the class into four logical parts, as follows.

1.	 The properties of the SimpleWebToken class: Issuer, Audience, ExpiresOn, and Signature.
ExpiresOn is not a timestamp but is the number of seconds since midnight of January 1, 1970

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

197

UTC for the token to expire. It adds two minutes to the current date and time and computes
the UNIX time for the same. I use two minutes as the lifetime for our SWT. Signature is just the
value of the HMACSHA256 name–value pair. The constructor takes in the 256-bit code shared
key of the audience for which this token is being created. See Listing 10-7.

Listing 10-7.  Simple Web Token (Partial): Properties 

public class SimpleWebToken
{
 private static readonly TimeSpan lifeTime = new TimeSpan(0, 2, 0);
 private static readonly DateTime epochStart = new DateTime(1970, 01, 01, 0, 0, 0, 0, DateTimeKind.Utc);
 private NameValueCollection nameValuePairs;
 private byte[] keyBytes = null;
 
 public SimpleWebToken(string key)
 {
 TimeSpan ts = DateTime.UtcNow - epochStart + lifeTime;
 this.ExpiresOn = Convert.ToUInt64(ts.TotalSeconds);
 this.nameValuePairs = new NameValueCollection();
 
 keyBytes = Convert.FromBase64String(key);
 }
 
 public string Issuer { get; set; }
 public string Audience { get; set; }
 public byte[] Signature { get; set; }
 public ulong ExpiresOn { get; private set; }
} 

2.	 Now, let’s get to the claims part. There is a method to add claims in the form of name–value
pairs. There is a read-only property that returns the claims thus added in the form of
IList<Claim> (see Listing 10-8). A little bit of complication here is that the property getter
handles the case of multivalue claims such as role. There can be multiple claims with the
same name; in such cases, the values for that name are grouped as comma-separated values.
For example, role=role1&role=role2 will be role=role1,role2.

Listing 10-8.  Simple Web Token (Partial): Claims Property and AddClaim Method 

public IList<Claim> Claims
{
 get
 {
 return this.nameValuePairs.AllKeys
 .SelectMany(key =>
 this.nameValuePairs[key].Split(',')
 .Select(value => new Claim(key, value))
).ToList();
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web tokens

198

public void AddClaim(string name, string value)
{
 this.nameValuePairs.Add(name, value);
}

3. The ToString() method of object is overridden to return the string representation of the
SWT or the serialized token, as shown in Listing 10-9. Following are the steps.

a. First, stuff the issuer in the corresponding field.

b. Add the claims. The claim is just a name–value pair. So, just loop through the set of
claims added to the token and add every claim to the serialized representation using
the name and the value.

c. Add the expiry stamp and audience.

d. Finally, add the signature in the HMACSHA256 field. What gets hashed is the entire
content of the SWT except the HMACSHA256 field. In other words, whatever has
been added to StringBuilder up to this point is the data that must be signed. The
signature is the HMAC-SHA256 hash of the data, created using the class HMACSHA256.

Listing 10-9. Simple Web Token (Partial): ToString Method

public override string ToString()
{
 StringBuilder content = new StringBuilder();

 content.Append("Issuer=").Append(this.Issuer);

 foreach (string key in this.nameValuePairs.AllKeys)
 {
 content.Append('&').Append(key).Append('=').Append(this.nameValuePairs[key]);
 }

 content.Append("&ExpiresOn=").Append(this.ExpiresOn);

 if (!string.IsNullOrWhiteSpace(this.Audience))
 {
 content.Append("&Audience=").Append(this.Audience);
 }

 using (HMACSHA256 hmac = new HMACSHA256(keyBytes))
 {
 byte[] signatureBytes = hmac.ComputeHash(Encoding.ASCII.GetBytes(content.ToString()));

 string signature = HttpUtility.UrlEncode(Convert.ToBase64String(signatureBytes));

 content.Append("&HMACSHA256=").Append(signature);
 }

 return content.ToString();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

199

4.	 In the SimpleWebToken class, the Parse method creates back a SWT object from its string
representation while validating the signature and token expiration at the same time. See
Listing 10-10. The Parse method deserializes a SWT from its serialized representation. It is
mostly a reverse of the earlier method of ToString().

a.	 Use HttpUtility.ParseQueryString() to decode and extract the name–value pairs.

b.	 Loop through all the names in the token. If a name–value pair is a predefined
name–value pair such as audience, expiry stamp, issuer, or the signature, the
corresponding value gets set in the relevant property of the SimpleWebToken object
that gets returned. If a name–value pair is not one of these predefined ones, a claim
object is created with the claim type as the name and the claim value as the value
corresponding to the name.

c.	 Signature validation is done as follows. (1) As part of the looping through names,
the Signature property is set to the value of the field with the name HMACSHA256.
This is the incoming signature. It needs to be compared with the computed
signature. (2) The signature is computed by reusing the serialization logic that
is already implemented in the ToString() method. I set the properties and call
ToString(), thereby getting the computed signature in the string returned by the
ToString() method. I simply extract out the computed signature using
HttpUtility.ParseQueryString() to generate name–value pairs and pick up the
computed signature using the HMACSHA256 name. (3) This computed signature is
compared against the incoming signature held in the Signature property. If both
signatures match, the token has not been tampered with in transit.

d.	 Another validation done in the Parse method is the expiry check, which is self-explanatory.
I compute the UNIX time of the current date and time and compare that against the
UNIX time put in as the expiry at the time of the SWT creation. If the token has expired,
I just throw a SecurityException.

e.	 The validations related to checking the audience for the RP and the issuer for the
issuing authority are left as an exercise to the reader! The basic idea behind this step is
to ensure the token is created by an issuing authority that the RP trusts and the token
is minted specifically for the RP application.

Listing 10-10.  Simple Web Token (Partial): Parse Method 

public static SimpleWebToken Parse(string token, string secretKey)
{
 var items = HttpUtility.ParseQueryString(token);
 var swt = new SimpleWebToken(secretKey);
 
 foreach (string key in items.AllKeys)
 {
 string item = items[key];
 switch (key)
 {
 case "Issuer": swt.Issuer = item; break;
 case "Audience": swt.Audience = item; break;
 case "ExpiresOn": swt.ExpiresOn = ulong.Parse(item); break;
 case "HMACSHA256": swt.Signature =
 Convert.FromBase64String(item); break;

www.it-ebooks.info

Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

200

 default: swt.AddClaim(key, items[key]); break;
 }
 }
 
 string rawToken = swt.ToString(); // Computes HMAC inside ToString()
 string computedSignature = HttpUtility.ParseQueryString(rawToken)
 ["HMACSHA256"];
 
 if (!computedSignature.Equals(Convert.ToBase64String(swt.Signature),
 StringComparison.Ordinal))
 throw new SecurityTokenValidationException("Signature is invalid");
 
 TimeSpan ts = DateTime.UtcNow - epochStart;
 
 if (swt.ExpiresOn < Convert.ToUInt64(ts.TotalSeconds))
 throw new SecurityTokenException("Token has expired");
 
 return swt;
}
 

Thus, we used a SWT to supply a claim (role claim) to the RP application. We did not follow any protocol such as
OAuth 2.0 to request and obtain the SWT. The token request and the subsequent presentation to the RP are all done
through simple method invocations.

When you use a SWT in ASP.NET Web API, the RP application is your web API. The token issuer can be an
outside entity such as Azure Access Control Service (ACS) or something that is internally available. If you implement
your own token issuer, it can be along the lines of the TokenIssuer class in Listing 10-5. In ASP.NET Web API, you can
implement the authentication logic in a message handler. The message handler will pull the serialized token from the
authorization request header in the bearer scheme and call the Parse static method of SimpleWebToken passing the
serialized token retrieved from the header. If the token is valid, claims can be extracted out and an identity created
based on that, as shown in Listing 10-6.

JSON Web Token
JWT is a token, which means that the main purpose of its existence is to carry a set of claims from the issuing authority
to the requestor and from the requestor to the RP. JWT (pronounced jot) is very much like a SWT, except that it is
in JSON format. A SWT is made up of name–value pairs that are HTML form encoded, but a JWT is based on JSON,
which is easier to use for JavaScript-based applications. An important difference to note is that a SWT does not
support encryption. There is nothing that prevents us from encrypting a SWT, but it is not defined as part of the SWT
specification. In contrast, a JWT comes in the following three flavors.

1.	 Plain text JWT: A JWT that is neither integrity-protected nor encrypted.

2.	 Signed JWT: A JWT with the claim set protected from tampering by an HMAC or a digital
signature using a public key infrastructure (PKI) in accordance with a JSON Web
Signature (JWS).

3.	 Encrypted JWT: A JWT with the claim set encrypted for confidentiality, as specified by
JSON Web Encryption (JWE).

In the following sections, I cover signed JWT and encrypted JWT. A plain text JWT is just a subset of signed JWT
(without the signature), and hence I do not specifically cover plain text JWT.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

201

Base64 URL Encoding
Unlike XML-based SAML, the web tokens—both SWT and JWT—are compact and hence better suited to be used in
an HTTP header for REST-based services. The web tokens can be sent even in the query string part of URLs. The JWT
specification takes the last part into account while defining the encoding scheme to be used with JWT.

It is a standard practice to use base64 encoding to transmit binary data such as the byte array encrypted or a
digital signature, which is again a byte array. When binary data has to be transmitted as part of textual data—for
example, if we need to send a token containing a signature in an HTTP header that will accept only textual or string
data—base64 encoding is used to make sure the binary data does not get corrupted in transit.

The .NET Framework has Convert.ToBase64String(byte[]) and Convert.FromBase64String(string) to
convert a byte array to a base64-encoded string and vice versa. Using standard base64 encoding in a URL requires
encoding of some of the characters created by the standard base64 encoding such as ‘+’ , ‘/’ , or ‘=’ characters into
special encoding sequences, ‘%2B’, ‘%2F’, and ‘%3D’, respectively. In place of one character, we now have three. This
makes the payload bigger, which goes against the objective of making the payload as compact as possible, to be used
in an HTTP header or a query string.

For this reason, the JWT specification specifies base64 URL encoding to be used. Base 64 URL encoding is a
variation on top of the standard base64 encoding, where ‘+’ and ‘/’ characters are replaced with ‘-’ and ‘_’ , respectively,
and the padding ‘=’ characters are removed so that the payload remains just the same, regardless of URL encoding or
form encoding.

Before we dive deep into examining the JWT internals, let’s take some time to review the logic to accomplish
base64 URL encoding so that we can pay undivided attention to the core topic later.

Listing 10-11 shows the extension methods that help us perform base64 URL encoding on top of the standard
base64 encoding.

Listing 10-11.  Base64 URL Encoding Extensions 

public static class EncodingHelper
{
 public static string ToBase64String(this byte[] bytes)
 {
 return Convert.ToBase64String(bytes).TrimEnd('=').Replace('+', '-').Replace('/', '_');
 }
 
 public static string ToBase64String(this string input)
 {
 return Convert.ToBase64String(Encoding.UTF8.GetBytes(input))
 .TrimEnd('=').Replace('+', '-').Replace('/', '_');
 }
 
 public static byte[] ToByteArray(this string input)
 {
 input = input.Replace('-', '+').Replace('_', '/');
 
 int pad = 4 - (input.Length % 4);
 pad = pad > 2 ? 0 : pad;
 
 input = input.PadRight(input.Length + pad, '=');
 
 return Convert.FromBase64String(input);
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

202

The ToBase64String() method is self-explanatory. It just performs the standard base64 encoding using
Convert.ToBase64String(). In the resulting string, it replaces ‘+’ with ‘-’ and ‘/’ with ‘-’ and removes the trailing ‘=’.

ToByteArray() does the decoding and is a bit more involved. First, it puts back the ‘+’ and ‘/’ it replaced while
encoding. The dilemma while putting back the trailing ‘=’ is how many to put back. We blindly removed the trailing
‘=’ while encoding. Math comes to our rescue here. If the length is exactly divisible by 4, there would not have been
any trailing ‘=’ in the standard base64-encoded string. A valid base64-encoded string will have either one trailing
‘=’ or two trailing ‘=’, as in ‘==’. So, we get the modulus of four, which is the remainder when the length is divided by
four, and subtract that from four to get the vacant spaces to pad. If it is a legal value of one or two, we pad the string
with that many ‘=’ at the end of the string. If it is a zero or any other value, we do nothing. Once this logic is applied,
we get the standard base64-encoded string from the base64 URL encoded string, which we simply convert to a byte
array using Convert.FromBase64String() provided in the .NET Framework.

With base64 URL encoding out of our way now, we are back to the main topic of JWT.

Anatomy of a Signed JSON Web Token
A signed JWT has its payload, which is the set of claims, protected from tampering by the help of a signature. A signature
here represents both the HMAC as well as a signature created using a private key of the PKI. In this book, I use
HMAC-SHA256 for the signature, the same as with a SWT.

Let’s start with a review of a sample signed JWT, shown in Listing 10-12. It is worse than a SWT in terms of
readability. A SWT is forms encoded, which makes it hard on the eyes, but a JWT is total gibberish because it is base64
URL encoded. Listing 10-12 shows what we get when dealing with JWT in C# code.

Listing 10-12.  Sample JWT 

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOiIxMzUwNzExNTI0IiwiaXNzIjoiVG9rZW5Jc3N1ZXIiLCJhdWQ
iOiJNeVJlbHlpbmdQYXJ0QXBwIiwiaHR0cDovL3Nja|GVtYXMueG1sc29hcC5vcmcvd3MvMjAwNS8wNS9pZGVudGl0eS9jbGF
pbXMvbmFtZSI6ImpxaHVtYW4iLCJodHRwOi8vc2NoZW1hcy5taWNyb3NvZnQuY29tL3dzLzIwMDgvMDYvaWRlbnRpdHkvY2x
haW1zL3JvbGUiOiJEZXZlbG9wZXIsQWRtaW4ifQ.3_TI8aTLcKHW17bpkZL2_-sngnQ0uD86JQ-MtmZxeKM
 

Listing 10-13 shows a better looking decoded JWT. I not only decoded the content, but also put the separating
dots (.) on new lines so you can see the segments of the token.

Listing 10-13.  Decoded JWT for Your Reading Pleasure 

{"typ":"JWT","alg":"HS256"}
.
{"exp":"1350711524","iss":"TokenIssuer","aud":"MyRelyingPartApp","http://schemas.xmlsoap.org/ws/
2005/05/identity/claims/name":"jqhuman","http://schemas.microsoft.com/ws/2008/06/identity/claims/
role":"Developer,Admin"}
.
[Signature - HMAC SHA256]
 

There are three segments in Listing 10-13.

1.	 First is the JWT header. Because this is a token protected by an HMAC created using SHA256,
the algorithm field reflects that piece of information. The header segment is in JSON.

2.	 The segment following the first dot contains the set of claims. This is the actual payload.
I use three reserved claims, namely expiration time claim (exp), issuer claim (iss),
and audience claim (aud). A reserved claim, as the name indicates, is reserved by the
specification. This is similar to certain keywords being reserved by a programming
language for naming variables. The purpose of a reserved claim is to prevent ambiguity.

www.it-ebooks.info

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name%22:%22jqhuman%22,%22http://schemas.microsoft.com/ws/2008/06/identity/claims/role%22:%22Developer,Admin
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name%22:%22jqhuman%22,%22http://schemas.microsoft.com/ws/2008/06/identity/claims/role%22:%22Developer,Admin
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name%22:%22jqhuman%22,%22http://schemas.microsoft.com/ws/2008/06/identity/claims/role%22:%22Developer,Admin
http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

203

When there is an iss claim in JWT, you know for sure that it is an issuer claim. There also
are private claims. You can put the claims that are meaningful to your application here.
In the preceding example, I use the .NET Framework claim type and the claim value. The
payload segment is also in JSON.

3.	 Because we are looking at a signed JWT, which is protected by an HMAC, I show the third
segment containing the signature. I cannot meaningfully decode the signature into a
string, and hence just show a placeholder.

Note■■   If this is a plain text JWT, the header will have “alg”:“none” and the third segment will be absent.

Using a Signed JSON Web Token in a Console Application
Similar to the way I demonstrated a SWT, I use a signed JWT in a console application here. To keep the focus on JWT,
the token issuer and the RP are modeled as simple C# classes. In practice, these entities will be applications and not
classes, just to state the obvious. The following are the four classes I cover in this section.

1.	 The Program class with the Main method acting as the client application.

2.	 The KeyIssuer class with the GenerateSharedSymmetricKey method to generate a
symmetric key.

3.	 The TokenIssuer class with the GetToken method that issues a JWT, which is just a string.
It also has a ShareKeyOutofBand to accept the shared key during out-of-band key exchange.

4.	 The RelyingParty class has three methods.

a.	 The ShareKeyOutofBand method to accept the shared key during out-of-band key
exchange.

b.	 The Authenticate method that accepts the token and establishes the identity based
on the claims in the token.

c.	 The TheMethodRequiringAuthZ method, as the name indicates, is an access-controlled
method. The client application is allowed or denied permission to call this method,
based on the claims in the token.

5.	 The JsonWebToken class, which implements the JWT and JWS specifications.

The Program Class
The logic implemented in the Main method of the Program class shown in Listing 10-14 consists of two major parts.

1.	 The symmetric key generation followed by the key sharing between TokenIssuer and
RelyingParty. The GenerateSharedSymmetricKey method on the KeyIssuer object is called
to generate a shared key. It is then shared with the TokenIssuer and RelyingParty objects
through the call to the ShareKeyOutofBand method. In practice, this part happens out of band.

2.	 The GetToken method on the TokenIssuer object is called and the token returned is
presented to the RelyingParty object through the Authenticate method call followed by
the call to the access-controlled TheMethodRequiringAuthZ method. This part represents
the client application obtaining the token and presenting the same to the RP.

a
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

204

Listing 10-14.  Console Application 

class Program
{
 static void Main(string[] args)
 {
 string secretKey = KeyIssuer.GenerateSharedSymmetricKey();
 
 // Token issuer
 TokenIssuer issuer = new TokenIssuer();
 issuer.ShareKeyOutofBand("MyRelyingPartApp", secretKey);
 
 // Relying Party
 RelyingParty app = new RelyingParty();
 app.ShareKeyOutofBand(secretKey);
  
 // A client of the relying party app gets the token
 string token = issuer.GetToken("MyRelyingPartApp", "opensesame");
 
 // With the token, the client now presents the token and
 // calls the method requiring authorization
 app.Authenticate(token);
 app.TheMethodRequiringAuthZ();
 }
} 

The KeyIssuer Class
I use a symmetric shared key to create the HMAC as the signature of the SWT. Listing 10-15 shows the KeyIssuer
class, which I’m introducing here. It is similar to what the key generating code did in the TokenIssuer class we saw in
the section “Simple Web Token” earlier in this chapter. The key generation has to be separated out because I will be
building on these classes for implementing encryption in a JWT. When a public and a private key are involved, as in
the case of asymmetric keys, it no longer makes sense for the token issuer to generate the keys.

Listing 10-15.  Symmetric Key Generation 

public class KeyIssuer
{
 public static string GenerateSharedSymmetricKey()
 {
 // 256-bit key
 using (var provider = new RNGCryptoServiceProvider())
 {
 byte[] secretKeyBytes = new Byte[32];
 provider.GetBytes(secretKeyBytes);
 
 return Convert.ToBase64String(secretKeyBytes);
 }
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

205

The TokenIssuer Class
The TokenIssuer class used here is very similar to the one we used with the SWT. There is one minor enhancement
to it, which is the method to the ShareKeyOutofBand() method that can be used to share the key with the issuer out of
band. The token issuer stores the key in a dictionary against the audience (the RP) and retrieves it for subsequent use.
Of course, I use a console application with classes representing the entities in a real scenario, but the process is mostly
the same.

GetToken() creates a new instance of the JsonWebToken class passing in the symmetric key corresponding to the
RP (audience) and an identifier that represents the token issuer. The latter is important for an RP to verify if the token
is issued by someone it trusts. See Listing 10-16.

Listing 10-16.  TokenIssuer GetToken() Method 

public class TokenIssuer
{
 private Dictionary<string, string> audienceKeys = new Dictionary<string, string>();
 
 // This method is called to register a key with the token issuer against an audience or an RP
 public void ShareKeyOutofBand(string audience, string key)
 {
 if (!audienceKeys.ContainsKey(audience))
 audienceKeys.Add(audience, key);
 else
 audienceKeys[audience] = key;
 }
 
 public string GetToken(string audience, string credentials)
 {
 // Ignoring the credentials and adding a few claims for illustration
 JsonWebToken token = new JsonWebToken()
 {
 SymmetricKey = audienceKeys[audience],
 Issuer = "TokenIssuer",
 Audience = audience
 };
 
 token.AddClaim(ClaimTypes.Name, "jqhuman");
 token.AddClaim(ClaimTypes.Role, "Developer");
 token.AddClaim(ClaimTypes.Role, "Admin");
  
 return token.ToString();
 }
} 

The RelyingParty Class
The RelyingParty class, shown in Listing 10-17, has a ShareKeyOutofBand() method just like the TokenIssuer class.
The RP is assumed to rely on one token issuing authority and hence the key is simply stored at the class level for
subsequent use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

206

The Authenticate() method is the means by which a client presents a JWT for authentication. The RP uses
JsonWebToken.Parse() to deserialize the token into an object and get the claims from this object. Based on this
claims set, a claims identity is established and a ClaimsPrincipal created and set to Thread.CurrentPrincipal for
the downstream code to do access control.

One such place is the method TheMethodRequiringAuthZ(), which is access protected to be used only by
the users in the role ‘Developer.’ For the sake of simplicity, role based-access control (RBAC) is used here. In real
production strength code, using claims based access control is recommended.

Listing 10-17.  Relying Party 

public class RelyingParty
{
 private string secretKey = String.Empty;
 
 public void ShareKeyOutofBand(string key)
 {
 this.secretKey = key;
 }
 
 public void Authenticate(string token)
 {
 JsonWebToken jwt = null;
 
 try
 {
 jwt = JsonWebToken.Parse(token, this.secretKey);
 
 // Now, swt.Claims will have the list of claims
 jwt.Claims.ToList().ForEach(c => Console.WriteLine("{0} ==> {1}", c.Type, c.Value));
 
 Thread.CurrentPrincipal = new ClaimsPrincipal(new ClaimsIdentity(jwt.Claims, "JWT"));
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 
 [PrincipalPermission(SecurityAction.Demand, Role = "Developer")]
 public void TheMethodRequiringAuthZ()
 {
 Console.WriteLine("With great power comes great responsibility - Uncle Ben");
 }
} 

Caution■■   When creating the ClaimsIdentity, the second parameter of “JWT” that appears to be innocuous and
rather unimportant is indeed very important in the .NET Framework 4.5. Without this, the IsAuthenticated property of
the identity remains false and your authorization will fail for no obvious reason.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

207

Figure 10-1.  Getting JSON.NET through NuGet

The JsonWebToken Class
We now look at the class representing the signed JWT. A signed JWT uses a digital signature or simply uses an HMAC,
in accordance with the JWS. I keep the signed JWT exactly like the SWT we have seen before. I use HMAC-SHA256 as
the signature and use the three reserved claims of audience, issuer, and expiration that we used with a SWT. There are
other reserved claims such as ‘Not Before’ (nbf), ‘Issued At’ (iat), ‘Principal’ (prn), and ‘JWT ID’ (jti), which I do not
use here. You can refer to the JWT specification to see if it makes sense to include them in your token, if you happen to
issue your own tokens.

I use a dictionary to store both reserved and private claims. Although there are properties corresponding to the
reserved claims, the underlying data provider is the dictionary. If there are multiple private claims with the same
type, I use comma-separated values so that we can use the claim type as the key for the dictionary. As per the JWT
specification, JWTs with duplicate claim names must be rejected. A dictionary is a good mechanism to ensure this.

JSON Serialization and Deserialization

I use the JSON.NET library to serialize the JsonWebToken object into its JSON token representation and deserialize or
parse the token back into its CLR object representation. The following steps show how to add JSON.NET to your project.

1.	 In Visual Studio, right-click the References node in Solution Explorer and select the
Manage NuGet Packages . . . option in the shortcut menu, as shown in Figure 10-1.

2.	 Click Online and search for Json to get JSON.NET in the search result.

3.	 Click Install. This will make the Newtonsoft.Json.dll a part of your project and add a
reference to this assembly.

In JsonWebToken, I have a bunch of properties defined for the header fields as well as reserved claims. I want only
the header fields to be serialized into the string representation of the JWT. Hence, for those properties corresponding
to the header fields I use the JsonProperty attribute with a name as defined in the JWT specification so that the
serialized token will have the right field names in the JSON. Because compactness is the goal, the field names as

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web tokens

208

defined by the JWT specification are concise. Using this approach of naming the property allows us to name the
properties long enough to be descriptive and in line with any coding standards a team might have.

I do not want the properties representing the reserved claims to get serialized. Hence I use a JsonIgnore attribute
and make sure they don’t get serialized off into the string token. Similar to a SWT, we use UNIX time to track the
expiration time.

Partial Implementation with the Properties

The JsonWebToken class with all the properties is shown in Listing 10-18. It is incomplete and without the two
important methods. I will include those two soon, in the next few pages, and make this class complete and reusable
when we get to Chapter 12, where we will see how to request these tokens using OAuth 2.0 and use them with ASP.
NET Web API.

Listing 10-18. JsonWebToken (Partial Implementation with Properties)

public class JsonWebToken
{
 private const string TYPE_HEADER = "typ";
 private const string JSON_WEB_TOKEN = "JWT";
 private const string SIGNING_ALGORITHM_HEADER = "alg";
 private const string HMAC_SHA256 = "HS256";
 private const string EXPIRATION_TIME_CLAIM = "exp";
 private const string ISSUER_CLAIM = "iss";
 private const string AUDIENCE_CLAIM = "aud";

 private static readonly TimeSpan lifeTime = new TimeSpan(0, 2, 0);
 private static readonly DateTime epochStart = new DateTime(1970,01,01,0,0,0,0, DateTimeKind.Utc);

 private byte[] keyBytes = null;
 private Dictionary<string, string> claims = new Dictionary<string, string>();

 public JsonWebToken()
 {
 TimeSpan ts = DateTime.UtcNow - epochStart + lifeTime;
 this.ExpiresOn = Convert.ToUInt64(ts.TotalSeconds);
 }

 [JsonProperty(PropertyName = TYPE_HEADER)]
 public string Type
 {
 get { return JSON_WEB_TOKEN; }
 }

 [JsonProperty(PropertyName = SIGNING_ALGORITHM_HEADER)]
 public string SignatureAlgorithm
 {
 get { return HMAC_SHA256; }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

209

 [JsonIgnore]
 public string SymmetricKey
 {
 get
 {
 return Convert.ToBase64String(keyBytes);
 }
 set
 {
 keyBytes = Convert.FromBase64String(value);
 }
 }
 
 [JsonIgnore]
 public IList<Claim> Claims
 {
 get
 {
 return this.claims.Keys.SelectMany(key =>
 this.claims[key].Split(',')
 .Select(value => new Claim(key, value))).ToList();
 }
 }
 
 [JsonIgnore]
 public ulong ExpiresOn
 {
 get
 {
 return UInt64.Parse(this.claims[EXPIRATION_TIME_CLAIM]);
 }
 private set
 {
 this.claims.Add(EXPIRATION_TIME_CLAIM, value.ToString());
 }
 }
 
 [JsonIgnore]
 public string Issuer
 {
 get
 {
 return this.claims.ContainsKey(ISSUER_CLAIM) ? this.claims[ISSUER_CLAIM] : String.Empty;
 }
 set
 {
 this.claims.Add(ISSUER_CLAIM, value);
 }
 }
 
  [JsonIgnore]
 public string Audience

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

210

 {
 get
 {
 return this.claims.ContainsKey(AUDIENCE_CLAIM) ?
 this.claims[AUDIENCE_CLAIM] :
 String.Empty;
 }
 set
 {
 this.claims.Add(AUDIENCE_CLAIM, value);
 }
 }
 
 public void AddClaim(string claimType, string value)
 {
 if (this.claims.ContainsKey(claimType))
 this.claims[claimType] = this.claims[claimType] + "," + value;
 else
 this.claims.Add(claimType, value);
 }
 
 // Class code not complete
 } 

Serialization (ToString Method)

Listing 10-19 shows the ToString() method that will be called by the token issuer to create the token in string form.
To create the HMAC, use the base64 URL encoded first segment, which is the header, append a dot to the end, and
append the base64 URL encoded first segment, which is the claim set. This is the data for which an HMAC has to be
created using the SHA256 algorithm. Base64 URL encode the HMAC bytes and append to the previous segments with
another dot separator. That completes the assembly of the signed JWT.

Listing 10-19.  JsonWebToken: ToString()Method 

public override string ToString()
{
 string header = JsonConvert.SerializeObject(this).ToBase64String();
 string claims = JsonConvert.SerializeObject(this.claims).ToBase64String();
 string signature = String.Empty;
 
 using (HMACSHA256 hmac = new HMACSHA256(keyBytes))
 {
 string data = String.Format("{0}.{1}", header, claims);
 byte[] signatureBytes = hmac.ComputeHash(Encoding.UTF8.GetBytes(data));
 signature = signatureBytes.ToBase64String();
 }
 
 return String.Format("{0}.{1}.{2}", header, claims, signature);
}
 

Compared to a SWT, the code to create the string representation of the JWT is concise, thanks to JSON.NET and
JSON itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

211

Deserialization (Parse Method)

Listing 10-20 shows the Parse() method of JsonWebToken. It does the reverse of ToString(); that is, it deserializes the
string representation to a CLR object. Following are the steps involved in this process.

1.	 Ensure there are three segments.

2.	 Separate the three segments out and decode them.

3.	 Get the JsonWebToken object by deserializing the header JSON. The object at this point is
not fully formed and has only the header data. The most important part, which is the claim
set, is not added in yet.

4.	 Deserialize the claim set JSON back into a dictionary, which is set into the JsonWebToken
object, to make it a full-blown object with all the data it used to contain prior to serialization.

5.	 Compute the signature using the header and claims segment and compare the computed
signature against the incoming signature, which is the third part of the token when split by
a dot. If the signature matches, validate the expiration.

6.	 I don’t do any validation based on the issuer or the RP for brevity reasons, but any
production implementation must do those checks.

Listing 10-20.  JsonWebToken: Parse() Method 

public static JsonWebToken Parse(string token, string secretKey)
{
 var parts = token.Split('.');
 if (parts.Length != 3)
 throw new SecurityException("Bad token");
 
 string header = Encoding.UTF8.GetString(parts[0].ToByteArray());
 string claims = Encoding.UTF8.GetString(parts[1].ToByteArray());
 byte[] incomingSignature = parts[2].ToByteArray();
 string computedSignature = String.Empty;
 
 var jwt = JsonConvert.DeserializeObject<JsonWebToken>(header);
 jwt.SymmetricKey = secretKey;
 jwt.claims = JsonConvert.DeserializeObject<Dictionary<string, string>>(claims);
 
 using (HMACSHA256 hmac = new HMACSHA256(Convert.FromBase64String(secretKey)))
 {
 string data = String.Format("{0}.{1}", parts[0], parts[1]);
 byte[] signatureBytes = hmac.ComputeHash(Encoding.UTF8.GetBytes(data));
 computedSignature = signatureBytes.ToBase64String();
 }
 
 if (!computedSignature.Equals(incomingSignature.ToBase64String(), StringComparison.Ordinal))
 throw new SecurityException("Signature is invalid");
 
 TimeSpan ts = DateTime.UtcNow - epochStart;
 
 if (jwt.ExpiresOn < Convert.ToUInt64(ts.TotalSeconds))
 throw new SecurityException("Token has expired");
 
 return jwt;
} 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

212

This completes the implementation of a signed JWT using a console application. In Chapter 5, the section
“Implementing Claims-Based ASP.NET Web API” illustrates how to use claims using WIF classes in ASP.NET Web API.
The same can be enhanced with the JWT code from this section to use the claims from JWT in ASP.NET Web API. In
Chapter 12, I implement ASP.NET Web API accepting a JWT from a client application that gets the token using the
OAuth 2.0 protocol from an authorization server (OAuth 2.0 terminology).

Anatomy of an Encrypted JSON Web Token
In contrast to the SWT specification, the JWT specification (JSON Web Encryption or JWE, to be exact) specifies how
to go about encrypting a JWT. The cryptographic algorithms to be used while encrypting a JWT are described in the
separate JSON Web Algorithms (JWA) specification.

An encrypted JWT token no longer follows the same format as the signed JWT we saw earlier. Instead of the three
segments we saw with JWS, we now have five segments with JWE. As with the signed token, all these fields are base64
URL encoded and separated by a dot. Following are the five segments.

1.	 Header

2.	 Encrypted master key, produced by the key encryption process

3.	 Initialization vector

4.	 Encrypted data or the ciphertext, produced by the data encryption process

5.	 Tag, produced by the data encryption process

All the segments except for the header are fundamentally byte arrays. Hence, there is little merit in looking at a
sample for those segments. Listing 10-21 shows a sample header.

Listing 10-21.  Sample JWE Header 

{"alg":"RSA-OAEP", "enc":"A256GCM"}
 

There are two fields in the header. These fields convey the following information about the encrypted JWT.

“alg”, or algorithm, identifies the cryptographic algorithm used to encrypt the master key. In this •	
example, it is RSA Encryption Scheme - Optimal Asymmetric Encryption Padding (RSAES OAEP).

“enc”, or encryption method, identifies the block encryption algorithm used to encrypt the •	
plain text to produce the ciphertext. From the perspective of an encrypted JWT, the plain text is
the claim set carried by the token. As per JWE, an authenticated encryption algorithm must be
used for this purpose. I explain authenticated encryption in the next section. In the preceding
example, the encryption method is Advanced Encryption Standard (AES) with a key size of 256
bits used with the Galois/Counter Mode (GCM) mode of operation. GCM is a mode of operation
for symmetric key cryptographic block ciphers widely adopted for efficiency and speed.

To understand how the algorithm and encryption methods are used to produce the other four segments of
the encrypted JWT, you will need to understand the process of authenticated encryption as well as why the JWE
specification requires authenticated encryption to be used.

Authenticated Encryption
A JWT is either signed or encrypted. If the claims payload does not contain any confidential information, encryption
will not be needed and signing alone will be sufficient to ensure token integrity. When the claims payload contains
confidential information, the JWT is encrypted. Although token confidentiality is ensured by authentication, it cannot
ensure the token integrity. For this reason, authenticated encryption is employed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

213

Authenticated encryption is designed to simultaneously provide confidentiality, integrity, and authenticity
assurances on the message. This type of encryption is different from the traditional encryption methods the .NET
Framework supports out of the box such as Rijndael or Triple DES because it produces an authentication tag in
addition to the ciphertext when encrypting plain text. The encryption methods supported by the .NET Framework
are strong, no doubt. If these methods are used correctly, a malicious user will not be able to decrypt the ciphertext
created by the typical encryption classes of the .NET Framework. However, a malicious user can modify the ciphertext
bytes corrupting the data. Because there is no signing involved, it will not be possible to detect this tampering. The
authenticated encryption algorithms solve the problem by creating the authentication tag that can be used to verify if
the encrypted ciphertext was tampered with in transit.

As we saw in Chapter 6, symmetric encryption involves two inputs, apart from the plain text.

1.	 The symmetric key, which is a shared secret between the sender and the receiver.

2.	 An initialization vector, which is shared between the sender and the receiver but need not
be a secret.

In the case of authenticated encryption, there is a third input.

3.	 Additional authenticated data (AAD), which is an input to the encryption process. The
ciphertext produced by the encryption process does not contain this AAD. Hence, using the
ciphertext, the AAD cannot be figured out. The sender and the receiver must agree on how
the AAD will be formatted and used to encrypt and decrypt out of band. If the AAD supplied
during the encryption and the decryption are different, the decryption process will fail to produce
the plain text. In an encrypted JWT, the AAD is the first three segments separated by a dot.

In traditional methods, the receiver will be able to decrypt and get some plain text out of it, even if a malicious
user tampers with the ciphertext. The plain text produced in this case will not match what was sent by the receiver,
but the receiver will not be able to know there is a difference. However, with the authenticated encryption method,
decryption itself will fail and will not produce any plain text. So, we get the benefit of both encryption and signing using
authenticated encryption. Figure 10-2 illustrates the inputs and outputs of authenticated encryption and decryption.

Plaintext

Plaintext

Authenticated
Encryption Authenticated

Decryption

Key

Initialization
Vector

Ciphertext

Ciphertext

Authentication
Tag

Authentication
Tag

Additional
Authenticated
Data

Key

Initialization
Vector

Additional
Authenticated
Data

Figure 10-2.  Authenticated encryption/decryption: inputs and outputs

Note■■  T he .NET Framework does not support authenticated encryption out of the box. But fear not! There is a
CodePlex project available by the name of CLR Security from which you can download a .NET Framework assembly with
classes that will help us achieve authenticated encryption. Security.Cryptography.dll is the assembly and the URL
for the CodePlex project is http://codeplex.com/clrsecurity. In Windows 8 and Windows Server 2012, the

CryptographicEngine class of the Windows.Security.Cryptography.Core namespace supports the methods

EncryptAndAuthenticate and DecryptAndAuthenticate respectively for authenticated encryption and authenticated
decryption.

www.it-ebooks.info

http://codeplex.com/clrsecurity
http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

214

The Recipe for Creating an Encrypted JWT
The following steps show how to assemble an encrypted JWT with all five segments we saw in the previous
section.

1.	 The first segment, the header segment, is straightforward. I use RSAES OAEP as the
algorithm to encrypt the master key and AES256 GCM as the encryption method for
encrypting the claim set. The base64 URL encoded header shown in Listing 10-21 forms
the header segment.

2.	 Generate a 256-bit random master key.

3.	 Encrypt the master key generated in the preceding step with the public key of the RP using
RSAES OAEP, the algorithm defined in the header. Base64 URL encode the ciphertext. That
forms the second segment of the encrypted JWT.

4.	 Generate a 96-bit initialization vector (IV). Base64 URL encode the IV. That forms the third
segment of the token.

5.	 Format the AAD by concatenating the three segments formed so far separated by a period
character ‘ . ’ . The AAD will be the header segment separated by a dot, followed by the
base64 URL encoded encrypted master key separated by a dot, followed by the base64
URL encoded IV.

6.	 Perform authenticated encryption with the following as inputs (refer to Figure 10-2).

a.	 Key is the 256-bit master key in plain text generated in step 2.

b.	 Initialization vector is the 96-bit random value generated in step 4.

c.	 AAD is the byte array corresponding to the string formatted in step 5.

d.	 Plain text is the JSON representation of the set of claims that the token is
supposed to carry.

7.	 The output of authenticated encryption produces the ciphertext and authentication tag,
which are both byte arrays.

8.	 Base64 URL encode the cipher text. That forms the fourth segment.

9.	 Base64 URL encode the authentication tag. That forms the fifth and the final segment.

10.	 Put all five segments one after the other separated by a period character ‘ . ’ . That
completes the process of assembling the encrypted JWT.

To create an encrypted JWT, a token issuer needs only the public key of the RP. Everything else is generated and
computed through the preceding ten steps. To validate and extract claims out of an encrypted JWT, an RP application
needs only its own private key and, of course, the token itself.

Using an Encrypted JSON Web Token in a Console Application
Similar to the case of a signed JWT, I use an encrypted JWT in a console application. To keep the focus on JWT, the
token issuer and the RP are all modeled as simple C# classes. In practice, these entities will be applications and not
classes, just to state the obvious.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

215

Supporting Classes
In this section, I do not show the code for the TokenIssuer and RelyingParty classes. These classes are very similar to
the ones we saw with the signed JWT. The only difference is that the JsonWebEncryptedToken class is used instead of
the JsonWebToken class. I’ll start by showing the code in the Main method (see Listing 10-22). The token issuer has the
public key corresponding to the private key of the RP. There is no X.509 certificate involved here, and the KeyIssuer
class generates the key pair.

Listing 10-22.  Main Method 

static void Main(string[] args)
{
 Tuple<string, string> key = KeyIssuer.GenerateAsymmetricKey();
 
 TokenIssuer issuer = new TokenIssuer();
 issuer.ShareKeyOutofBand("AnotherRelyingPartApp", key.Item1); // Public Key
 
 RelyingParty anotherApp = new RelyingParty();
 anotherApp.ShareKeyOutofBand(key.Item2); // Private Key
 
 string token = issuer.GetEncryptedToken("AnotherRelyingPartApp", "opensesame");
 // With the token, the client now presents the token and calls
 // the method requiring authorization
 anotherApp.AuthenticateWithEncryptedToken(token);
 anotherApp.TheMethodRequiringAuthZ();
}
 

The GenerateAsymmetricKey method of the KeyIssuer class is shown in Listing 10-23. The RSACryptoServiceProvider
class is used to generate the public–private key pair, as shown in Chapter 6. The public–private keys in the form of
XML are returned to the caller as a Tuple.

Listing 10-23.  GenerateAsymmetricKey Method 

public static Tuple<string, string> GenerateAsymmetricKey()
{
 string publicKey = String.Empty;
 string privateKey = String.Empty;
 
 using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
 {
 publicKey = rsa.ToXmlString(false);
 privateKey = rsa.ToXmlString(true);
 }
 
 return new Tuple<string, string>(publicKey, privateKey);
}
 

There are five segments in the encrypted JWT, and it will be helpful to have a class representing the payload.
Listing 10-24 shows a new class added, the EncryptedPayload class. There are five properties in this class,
representing the JWT segments in the same order as how they will appear in the token. The Parse method creates
an instance of the EncryptedPayload class from an encrypted token. The ToString method is simply the reverse of
the Parse method. It creates the string representation of the token from the Plain Old CLR Object (POCO). There is

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

216

another method, ToAdditionalAuthencticatedData(), which supplies the additional data for data encryption. It uses
the first three segments from the payload.

Listing 10-24.  EncryptedPayload Class 

public class EncryptedPayload
{
 public string Header { get; set; }
 public byte[] EncryptedMasterKey { get; set; }
 public byte[] InitializationVector { get; set; }
 public byte[] CipherText { get; set; }
 public byte[] Tag { get; set; }
 
 public override string ToString()
 {
 return String.Format("{0}.{1}.{2}.{3}.{4}", Header.ToBase64String(),
 EncryptedMasterKey.ToBase64String(),
 InitializationVector.ToBase64String(),
 CipherText.ToBase64String(),
 Tag.ToBase64String());
 }
 
 public byte[] ToAdditionalAuthenticatedData()
 {
 string data = String.Format("{0}.{1}.{2}", Header.ToBase64String(),
 EncryptedMasterKey.ToBase64String(),
 InitializationVector.ToBase64String());
 return Encoding.UTF8.GetBytes(data);
 }
 
 public static EncryptedPayload Parse(string token)
 {
 var parts = token.Split('.');
 if (parts.Length != 5)
 throw new SecurityException("Bad token");
 
 return new EncryptedPayload()
 {
 Header = Encoding.UTF8.GetString(parts[0].ToByteArray()),
 EncryptedMasterKey = parts[1].ToByteArray(),
 InitializationVector = parts[2].ToByteArray(),
 CipherText = parts[3].ToByteArray(),
 Tag = parts[4].ToByteArray()
 };
 }
} 

The JsonWebEncryptedToken Class
The JsonWebEncryptedToken class, shown in Listing 10-25, does all the grunt work related to encryption and
decryption. The JsonWebEncryptedToken class is very similar to JsonWebToken.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

217

For the sake of brevity, I’ve removed two important methods from the listing that serialize and deserialize.
We will look at those later.

Listing 10-25.  JsonWebEncryptedToken 

public class JsonWebEncryptedToken
{
 private const string TYPE_HEADER = "typ";
 private const string JSON_WEB_TOKEN = "JWT";
 private const string ENCRYPTION_ALGORITHM_HEADER = "alg";
 private const string ENCRYPTION_METHOD_HEADER = "enc";
 private const string RSA_OAEP = "RSA-OAEP";
 private const string AES_256_GCM = "A256GCM";
 private const string EXPIRATION_TIME_CLAIM = "exp";
 private const string ISSUER_CLAIM = "iss";
 private const string AUDIENCE_CLAIM = "aud";
 
 private static readonly TimeSpan lifeTime = new TimeSpan(0, 2, 0);
 private static readonly DateTime epochStart = new DateTime(1970, 01, 01, 0, 0, 0, 0,

DateTimeKind.Utc);
 
 private Dictionary<string, string> claims = new Dictionary<string, string>();
 
 public JsonWebEncryptedToken()
 {
 TimeSpan ts = DateTime.UtcNow - epochStart + lifeTime;
 this.ExpiresOn = Convert.ToUInt64(ts.TotalSeconds);
 }
 
 [JsonProperty(PropertyName = TYPE_HEADER)]
 public string Type
 {
 get { return JSON_WEB_TOKEN; }
 }
 
 [JsonProperty(PropertyName = ENCRYPTION_ALGORITHM_HEADER)]
 public string EncryptionAlgorithm
 {
 get { return RSA_OAEP; }
 }
 
 [JsonProperty(PropertyName = ENCRYPTION_METHOD_HEADER)]
 public string EncryptionMethod
 {
 get { return AES_256_GCM; }
 }
  
 [JsonIgnore]
 public string AsymmetricKey { get; set; }
 
 [JsonIgnore]
 public IList<Claim> Claims

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web tokens

218

 {
 get
 {
 return this.claims.Keys.SelectMany(key =>
 this.claims[key].Split(',')
 .Select(value => new Claim(key, value))).ToList();
 }
 }

 [JsonIgnore]
 public ulong ExpiresOn
 {
 get
 {
 return UInt64.Parse(this.claims[EXPIRATION_TIME_CLAIM]);
 }
 private set
 {
 this.claims.Add(EXPIRATION_TIME_CLAIM, value.ToString());
 }
 }

 [JsonIgnore]
 public string Issuer
 {
 get
 {
 return this.claims.ContainsKey(ISSUER_CLAIM) ? this.claims[ISSUER_CLAIM] : String.Empty;
 }
 set
 {
 this.claims.Add(ISSUER_CLAIM, value);
 }
 }

 [JsonIgnore]
 public string Audience
 {
 get
 {
 return this.claims.ContainsKey(AUDIENCE_CLAIM) ?
 this.claims[AUDIENCE_CLAIM] :
 String.Empty;
 }
 set
 {
 this.claims.Add(AUDIENCE_CLAIM, value);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

219

 public void AddClaim(string claimType, string value)
 {
 if (this.claims.ContainsKey(claimType))
 this.claims[claimType] = this.claims[claimType] + "," + value;
 else
 this.claims.Add(claimType, value);
 }
 
 // Incomplete class - Two methods removed for brevity
} 

Serialization (ToString Method)

We now look at the ToString method that creates the string representation of the encrypted token. This is where
most of the action happens! The recipe we saw earlier for creating the encrypted JWT is implemented in the ToString
method, as shown in the following steps.

1.	 Using JSON.NET, serialize the object instance and the claims dictionary that contains
the claims set into header and claims variables. At this point, these are just JSON
representations that are not base64 URL encoded. See Listing 10-26.

Listing 10-26.  ToString Method 

public override string ToString()
{
 string header = JsonConvert.SerializeObject(this);
 string claims = JsonConvert.SerializeObject(this.claims);
 // Rest of the logic goes here
} 

2.	 Generate a 256-bit random key called master key and a 96-bit IV using the
RNGCryptoServiceProvider class, as shown in Listing 10-27. This step is the same as the
one in which symmetric keys are generated in Chapter 6. There is nothing special here.

Listing 10-27.  Master Key and IV Generation 

byte[] masterKey = new byte[32];
byte[] initVector = new byte[12];
using (var provider = new RNGCryptoServiceProvider())
{
 provider.GetBytes(masterKey);
 provider.GetBytes(initVector);
} 

3.	 Encrypt the master key generated in the previous step, using the public key of the RP,
as shown in Listing 10-28. No X.509 certificate is used here. This is the same as how
we implemented asymmetric encryption without a X.509 certificate in Chapter 6 using
RSACryptoServiceProvider. I explicitly set the second parameter of the Encrypt
method to true to use OAEP padding, because the algorithm I decided to use is
RSA-OAEP.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

220

Listing 10-28.  Encryption of the Master Key 

byte[] encryptedMasterKey = null;
using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
{
 rsa.FromXmlString(this.AsymmetricKey);
 encryptedMasterKey = rsa.Encrypt(masterKey, true); // OAEP Padding
} 

4.	 So far, we have the header, the encrypted master key, and the IV. Load them up in an
EncryptedPayload instance and call ToAdditionalAuthenticatedData() to get the AAD.
This method simply base64 URL encodes the three elements (header, key, and IV), puts a
dot in between, and returns the string to us. See Listing 10-29.

Listing 10-29.  Additional Authenticated Data 

var authData = new EncryptedPayload()
{
 Header = header,
 EncryptedMasterKey = encryptedMasterKey,
 InitializationVector = initVector
};
 
byte[] additionalAuthenticatedData = authData.ToAdditionalAuthenticatedData();
 

5.	 We are now all set to do the authenticated encryption. Use the AuthenticatedAesCng class
from the Security.Cryptography.dll assembly downloaded from the CodePlex CLR Security
project, as shown in Listing 10-30.

a.	 Set the chaining mode to Galois/Counter Mode (GCM).

b.	 The inputs to the encryption process are (1) the master key, which is a 256-bit random key
we generated as is and not the encrypted one; (2) the IV, which is 96 bits we generated
as is; (3) the AAD, which we got by calling the ToAdditionalAuthenticatedData
method of the EncryptedPayload object; and (4) the plain text, which is the claims set
in JSON format converted to an array of bytes. Two things come out: the ciphertext, or
the encrypted bytes corresponding to the claims, and a tag.

Listing 10-30.  Authenticated Encryption 

byte[] tag = null;
byte[] cipherText = null;
 
using (var aes = new AuthenticatedAesCng())
{
 aes.CngMode = CngChainingMode.Gcm; // Galois/Counter Mode
 aes.Key = masterKey;
 aes.IV = initVector;
 aes.AuthenticatedData = additionalAuthenticatedData;
 
 using (MemoryStream ms = new MemoryStream())
 {
 using (IAuthenticatedCryptoTransform encryptor = aes.CreateAuthenticatedEncryptor())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

221

 {
 using (CryptoStream cs = new CryptoStream(ms, encryptor, CryptoStreamMode.Write))
 {
 // Encrypt the claims set
 byte[] claimsSet = Encoding.UTF8.GetBytes(claims);
 cs.Write(claimsSet, 0, claimsSet.Length);
 cs.FlushFinalBlock();
 tag = encryptor.GetTag();
 cipherText = ms.ToArray();
 }
 }
 }
} 

6.	 Create the final payload or the encrypted SWT by using the header, encrypted master key,
IV, cipher text, and tag, all base64 URL encoded and separated by a dot, as shown in
Listing 10-31.

Listing 10-31.  Assembling the Segments 

var payload = new EncryptedPayload()
{
 Header = header,
 EncryptedMasterKey = encryptedMasterKey,
 InitializationVector = initVector,
 CipherText = cipherText,
 Tag = tag
};
 
string token = payload.ToString();
 
return token; 

Deserialization (Parse Method)

The receiving end—in other words, the RP—has to extract the claims out of the encrypted SWT. The method that does
all the heavy lifting related to that is the Parse() method of JsonWebEncryptedToken, shown in Listing 10-32. The
process here is the exact reverse of ToString(). Following are the steps.

1.	 Use the static method of Parse of the EncryptedPayload class and extract the data in the
five segments. Through the properties available in the EncryptedPayload class, you can
access the encrypted master key, IV, authentication tag, and the ciphertext.

2.	 The RP has the private key of the asymmetric key pair. Hence, decrypt the master key using
the same.

3.	 Frame the additional authenticated data from the segments that have come in the
token using the first three segments: header, encrypted master key, and IV. This can be
accomplished by simply calling the ToAdditionalAuthenticatedData method on the
EncryptedPayload object created in the first step.

4.	 Use the decrypted master key, IV, the AAD from the previous step, and tag to decrypt the
ciphertext. If there is no tampering and all the inputs used are correct, this process will
produce the plain text. The plain text is just the JSON representation of the claim set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

222

Deserialize it back into the claims dictionary. Also, deserialize the header and create the
JsonWebEncryptedToken object. Then, check the expiry of the token.

5.	 Any other validation, such as the checks related to the issuer and the RP, are omitted for brevity.

Listing 10-32.  JsonWebEncryptedToken Parse Method 

public static JsonWebEncryptedToken Parse(string token, string privateKey)
{
 byte[] claimSet = null;
 EncryptedPayload payload = null;
 
 try
 {
 payload = EncryptedPayload.Parse(token);
 
 byte[] masterKey = null;
 using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
 {
 rsa.FromXmlString(privateKey);
 masterKey = rsa.Decrypt(payload.EncryptedMasterKey, true);
 }
 
 byte[] additionalAuthenticatedData = payload.ToAdditionalAuthenticatedData();
 using (AuthenticatedAesCng aes = new AuthenticatedAesCng())
 {
 aes.CngMode = CngChainingMode.Gcm;
 aes.Key = masterKey;
 aes.IV = payload.InitializationVector;
 aes.AuthenticatedData = additionalAuthenticatedData;
 aes.Tag = payload.Tag;
 
 using (MemoryStream ms = new MemoryStream())
 {
 using (CryptoStream cs = new CryptoStream(ms, aes.CreateDecryptor(),

CryptoStreamMode.Write))
 {
 byte[] cipherText = payload.CipherText;
 cs.Write(cipherText, 0, cipherText.Length);
 cs.FlushFinalBlock();
 
 claimSet = ms.ToArray();
 }
 }
 }
 }
 catch (Exception ex)
 {
 throw new SecurityException("Invalid Token", ex);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

223

 var jwt = JsonConvert.DeserializeObject<JsonWebEncryptedToken>(payload.Header);
 jwt.AsymmetricKey = privateKey;
 jwt.claims = JsonConvert.DeserializeObject<Dictionary<string, string>>
 (Encoding.UTF8.GetString(claimSet));
 
 TimeSpan ts = DateTime.UtcNow - epochStart;
 
 if (jwt.ExpiresOn < Convert.ToUInt64(ts.TotalSeconds))
 throw new SecurityException("Token has expired");
 
 return jwt;
} 

JWT Handler
In this chapter, I used console applications to demonstrate signed and encrypted JSON web tokens. I used the custom
classes of JsonWebToken and JsonWebEncryptedToken for this purpose. Because I used these implementations to help
you understand JWT, I did not implement all the necessary validations that a production-strength implementation
will implement, such as the checks related to the issuer and the relying party.

Microsoft has released the developer preview of the JWT Security Token Handler, in the form of a NuGet package.
It contains the classes to validate, parse and generate JWT tokens either on top of WIF or without any dependency
on WIF’s configuration. To install the JSON Web Token Handler, run the following command in the Package
Manager Console: Install-Package Microsoft.IdentityModel.Tokens.JWT. That should bring the Microsoft.
IdentityModel.Tokens.JWT assembly. Listing 10-33 shows the code using JWTSecurityTokenHandler to validate the
JWT issued by TokenIssuer.

Listing 10-33.  JWT Handler

public void AuthenticateUsingMsftJwt(string token)
{
 try
 {
 // Use JWTSecurityTokenHandler to validate the JWT token
 JWTSecurityTokenHandler tokenHandler = new JWTSecurityTokenHandler();

 TokenValidationParameters parms = new TokenValidationParameters()
 {
 AllowedAudience = "MyRelyingPartApp",
 ValidIssuers = new List<string>() { "TokenIssuer" },
 SigningToken = new BinarySecretSecurityToken(
 Convert.FromBase64String(this.secretKey))
 };

 var config = new IdentityConfiguration();
 Thread.CurrentPrincipal = config
 .ClaimsAuthenticationManager
 .Authenticate("TheMethodRequiringAuthZ",
 tokenHandler.ValidateToken

(token, parms));
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

224

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

One point to note is that the JWT specification does not allow duplicate claim types, but we have two role claims.
To handle this case, I use a ClaimsAuthenticationManager subclass that we saw in Chapter 5 to split the comma-
separated roles into individual claims, as shown in Listing 10-34.

Listing 10-34.  ClaimsAuthenticationManager Subclass

public class AuthenticationManager : ClaimsAuthenticationManager
 {
 public override ClaimsPrincipal Authenticate(string resourceName,
 ClaimsPrincipal incomingPrincipal)
 {
 if (incomingPrincipal == null)
 throw new SecurityException("Name claim missing");

 ClaimsIdentity identity = (ClaimsIdentity)incomingPrincipal.Identity;

 var newClaims = identity.Claims
 .SelectMany(c => c.Value.Split(',')
 .Select(value => new Claim(c.Type, value))).ToList();

 ClaimsPrincipal newPrincipal = new ClaimsPrincipal(
				 new ClaimsIdentity(newClaims, identity.AuthenticationType));

 return newPrincipal;
 }
}

To plug the ClaimsAuthenticationManager into the claims processing pipeline, modify the config file as shown
in Listing 10-35.

Listing 10-35.  Configuration Changes

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="system.identityModel"
 type="System.IdentityModel.Configuration.SystemIdentityModelSection,
		 System.IdentityModel, Version=4.0.0.0,
 Culture=neutral,PublicKeyToken=B77A5C561934E089"/>
 </configSections>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />
 </startup>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Web Tokens

225

 <system.identityModel>
 <identityConfiguration>
 <claimsAuthenticationManager
 type="JWT.AuthenticationManager,JWT"/>
 </identityConfiguration>
 </system.identityModel>
 </configuration>

Summary
A security token is a container for secure transport of the claim set over the network. Based on the format, there are
three major types of tokens: SAML tokens, SWT, and JWT. A SAML token is XML based and closely related to SOAP
and WS-* protocols. A client that needs a token from an STS requests and obtains one through the request–response
pair of RST and RSTR, in accordance with the WS-Trust specification.

A SWT and a JWT are both web tokens because they are designed to be compact and better suited to travel in
HTTP headers. The rough equivalent for WS-Trust in the REST world is OAuth 2.0, the protocol that is typically used to
request and obtain web tokens. OAuth 2.0 does not require a SWT or a JWT to be used as token formats. However, in
practice, when the OAuth 2.0 specification is used the tokens used are invariably web tokens.

A SWT is just HTML form encoded key name–value pairs. The token issuer and the RP decide on the exact
names and the values or the claim set. The only mandatory name–value pair required by the SWT specification is
HMACSHA256, the value of which is the HMAC of all the other name–value pairs in the token. The purpose of the
HMACSHA256 name–value pair is to ensure token integrity and authenticity.

A JWT is based on JSON, which the JavaScript-based applications find easier to use. An important difference to
note is that a SWT does not support encryption. There is nothing that prevents us from encrypting a SWT, but it is
not defined as part of the SWT specification. In contrast, a JWT comes in three flavors: (1) a plain text JWT, which is
neither integrity-protected nor encrypted, (2) a signed JWT with the claim set protected from tampering by an HMAC
or a digital signature using PKI in accordance with JWS, and (3) an encrypted JWT with the claim set encrypted for
confidentiality as well as integrity, as specified by JWE.

The JWT specification requires a special variant of base64 encoding called base64 URL encoding to be used.
Base64 URL encoding is a variation on top of the standard base64 encoding, where ‘+’ and ‘/’ characters are
respectively replaced with ‘-’ and ‘_’ and the padding ‘=’ characters removed so that the payload remains just the same
regardless of URL encoding or form encoding. Also, JWT employs a special type of encryption called authenticated
encryption designed to provide data authenticity, integrity, and confidentiality at the same time.

www.it-ebooks.info

http://www.it-ebooks.info/

227

Chapter 11

OAuth 2.0 Using Live Connect API

WS-* (pronounced WS-STAR) is the name used to refer collectively to the specifications built for SOAP-based web
services. One such specification is WS-Trust, which provides a framework for requesting, issuing, and validating
security tokens. I covered WS-Trust in Chapter 7. Another member of the WS-* family is WS-Security, a specification
that describes how to include security tokens in SOAP messages to be presented by the client application to the web
service as credentials for authentication and authorization. WS-Trust and WS-Security in combination provide a
standard way for a client application to request and obtain a security token and then present it to the relying party
SOAP-based web service as a credential for authentication.

In the world of REST to which ASP.NET Web API belongs, OAuth is the specification comparable to WS-Trust and
WS-Security. Basically, OAuth stands for open authorization. The OAuth framework enables a client application to
access a web API in one of two ways: on behalf of the end user by orchestrating an approval interaction between the
user and the underlying web application, which is generally referred to as three-legged OAuth, and by allowing the
client application to access the web API on its own behalf, which is generally referred to as two-legged OAuth.

The heart of the OAuth specification is the access token. OAuth specifies how a client application can request an
access token from the authorization server and present the token to a resource server (read web API) to access the
protected resource.

OAuth 1.0 was the initial version created in late 2006. It evolved into the current OAuth 2.0, with no backward
compatibility to OAuth 1.0. In this book, I limit coverage to OAuth 2.0. We start our exploration mainly from the point
of view of the client consuming a web API. Microsoft Live Connect implements the OAuth 2.0 protocol to authenticate
users, and I use Live Connect API in this chapter to demonstrate OAuth 2.0 in action.

Use Case for OAuth: App-to-App Data Sharing
OAuth solves the problem of one web application trying to access another web application on behalf of a user without
having to share the credentials. Suppose I own a small, specialized retail store. I have an e-mail web application where
I maintain all my customer contact information, not for just the customers with whom I communicate through e-mails,
but for everyone. Before I can do anything useful, the application requires me to login with my user ID and password,
which is very typical for any public-facing web application.

I use another public-facing web application, Promotion Manager, to manage my promotions, offers, and deals.
When I have a promotion ready to roll, I need Promotion Manager to retrieve the list of contacts and short list the
contacts, based on some given criteria, and start sending e-mails. To do this, Promotion Manager needs the contact
information from my e-mail application.

I could hand out my e-mail application credentials to the Promotion Manager web application, but I’m
uncomfortable with that option. The Promotion Manager web application is a public web application. If I share
credentials with it, it is likely that it will store the credentials or log them somewhere, intentionally or otherwise. Thus,
someone in that organization could send my credentials to a competitor of mine, who could then get the details of my
entire customer base. It would be devastating to my business. Maybe the developers of Promotion Manager followed
sound security practices, but I can’t count on that. Too much is at stake to even consider sharing the credentials.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

228

Fortunately, there is another option. Let’s say Promotion Manager needs to access my contact information.
Instead of requiring my credentials, it redirects me to the e-mail web application where I can confidently enter my
credentials and consent to share a subset of my contact information. The e-mail web application issues a temporary
token to Promotion Manager and puts me back on the Promotion Manager web page. Promotion Manager uses the
token, pulls the contact information, and displays the information to me. I review the list and, once satisfied, click
a button and start the process that sends e-mails to those on the list. In this case, I never need to share the e-mail
application credentials with the Promotion Manager application. I’m happy!

This is how OAuth helps me get around the rather uncomfortable situation of having to provide my credentials
for my contacts application to another application. In the preceding scenario, the Promotion Manager web
application in all probability will not issue a request for some web page from the e-mail application and start
extracting the data from the HTML through web-scraping techniques. It is very likely that the communication here is
through some sort of web API, the hallmark of the programmable web and a key piece of Web 2.0. There you are! After
taking a little bit of a detour, we are back on track with web APIs.

The best real-world analogy for an OAuth scenario is the valet parking analogy provided by Eran Hammer, the
former lead author and editor of the OAuth specifications. You give the attendant the valet key, but not the “real” key,
to park the car on your behalf. The valet key works in the ignition, but it does not open the glove compartment or the
trunk. So the temporary token issued by the e-mail web application in the preceding example is the valet key. It is not
a substitute for the real key. The valet key can perform only a subset of what the real key can do. Similarly, by using
the token the Promotion Manager web application can retrieve only a subset of contact information but cannot freely
access every bit of information from the e-mail web application.

OPENID VS. OAUTH
 

OpenID and OAuth are two different things, although they are related. They are both open standards and that
should explain why they both start with the letter ‘O.’ OAuth is related to authorization, whereas OpenID is related
to authentication. But they both belong to the world of security.

Many web users try to reuse their credentials, mainly the password, which is a poor practice from a security
perspective. If you are diligent, you need to maintain at least 10 or 20 credentials, depending on the extent to
which you have embraced the web in your daily life. OpenID tries to solve this problem by describing a standard
for consolidated digital identities.

For example, let’s say you create an identity with an OpenID provider like Google, and you use the same identity
to login to another web application. Even though you use the same identity, you do not need to enter your Google
credentials in the other web application. When the web application requires you to authenticate, it doesn’t show
you a login page where credentials are entered; instead, it redirects you to a page hosted by Google, the OpenID
provider. Because you are on a page within the Google domain, you can confidently enter your Google credentials.
When Google successfully authenticates you, you are considered logged in to the relying party web application
under the identity specified by the given OpenID.

OAuth 2.0 Roles
OAuth 2.0 defines four roles. This terminology is very important to understanding OAuth. You can find additional
information in the OAuth 2.0 specification Request for Comments (RFC) 6749, “The OAuth 2.0 Authorization
Framework” via the URL http://tools.ietf.org/html/rfc6749.

1.	 Resource Owner—Typically the end user who grants access to the protected resource. In
the preceding example where I discussed the interaction between the e-mail application
and the Promotion Manager web application, the resource owner is me and the resource is
the list of contacts.

www.it-ebooks.info

http://tools.ietf.org/html/rfc6749
http://www.it-ebooks.info/

API

229

2. Resource Server—The server that hosts the protected resource and is capable of accepting
access tokens and servicing the request. In the preceding example, the server running the
e-mail web application is the resource server.

3. Client—An application that needs access to the protected resource. In the preceding
example, the client is the Promotion Manager web application.

4. Authorization Server—The server that issues the access token to the client application after
authenticating the resource owner and getting authorization from the resource owner.
In the preceding scenario, the resource server and authorization server are the same.
They can be separate as well.

There are two components of the e-mail application in play: the web application and the web API. The resource
server hosts the web API, say www.my-email.com/api/contacts. The authorization server hosts the web page,
www.my-email.com/oauth, where I enter my credentials and consent to give access. In this case, www.my-email.com
is both the authorization and resource server, but the web application represents the authorization server and the web
API represents the resource server.

Note  From the standpoint of securing asp.net Web api, the resource server as defined by Oauth 2.0 corresponds
to your asp.net Web api that needs to be secured. the client as defined by the Oauth 2.0 specification is the client
application that consumes your asp.net Web api. the client application obtains an access token from the authorization
server and presents it to asp.net Web api as the credential to access the protected resources hosted by the resource server.

OAuth 2.0 Client Types
OAuth 2.0 defines two client types:

1. Confidential clients—Clients that are capable of maintaining the confidentiality of their
credentials. This can be a web application running in a server, such as an ASP.NET MVC
web application, where the server-side code such as your controller acting as the client is
a confidential client. In this case, the end user, even if he is the resource owner, does not
have access to any keys, secrets, or tokens issued by the authorization server.

2. Public clients—Clients that are incapable of maintaining the confidentiality of their
credentials. Examples of public clients are a Windows Presentation Foundation (WPF)
application running on a client machine, a web page running JQuery in a browser, or a
plug-in such as Silverlight running within a browser.

OAuth 2.0 Client Profiles
In the preceding scenario of an e-mail application and the Promotion Manager application, the client is a web
application. The OAuth 2.0 specification refers to this type of client application as a client profile and defines three
such profiles.

1. Web application—A web application is a confidential client running on a web server. In the
context of OAuth 2.0, this refers to the server-side code that executes in the web server such
as the controller action methods in the case of ASP.NET MVC or even the C# code in the
views but not the JavaScript code, even if it is part of an ASP.NET MVC Web application.

2. User agent-based application—A public client that runs under the context of a web
browser, such as JQuery or a Silverlight plug-in.

www.it-ebooks.info

http://www.my-email.com/api/contacts
http://www.my-email.com/oauth
http://www.my-email.com/
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

230

3.	 Native application—A public client that is installed and executed on the client side on
a device used by a resource owner. This includes WPF or a WinForms application that
runs on a laptop or desktop, a Microsoft Windows 8 application running on Surface, or
native applications running on an iPhone or possibly an iPad. Unlike the user agent-based
application profile, native applications do not have full browser capabilities.

OAuth 2.0 Authorization Grant Types
An authorization grant is the credential representing the resource owner’s consent to allow or grant access to the
protected resources. A client application uses the authorization grant to obtain an access token, which is a string
representing an authorization granted to the client by the resource owner. The OAuth 2.0 specification defines four
out-of-the-box grant types, with an extension mechanism for adding additional grant types.

1.	 Authorization code

2.	 Implicit

3.	 Resource owner password

4.	 Client credentials

Authorization Code Grant
An authorization code grant is applicable to a web application profile, the code that executes in a server. As the name
indicates, there is an authorization code that is associated with the grant type. There are two major steps that happen
as part of this grant type.

1.	 Once the resource owner grants access to the protected resource, the authorization server
returns an authorization code to the client by redirecting the browser to the callback URI
specified in the request, along with the authorization code in the query string.

2.	 The web application, which is the client, exchanges this authorization code for an access
token with the authorization server. The authorization server can optionally return a
refresh token to the client.

This two-step process is designed to ensure both the access and refresh tokens remain confined to the client web
application (the server side) and never get passed to the browser. Even the resource owner will not be able to see the
tokens. Only the authorization code is visible to the browser and resource owner. The secret sauce that the OAuth 2.0
specification uses to restrict the tokens from leaking into the browser, and hence into the hands of a resource owner or
malicious user, is the client secret.

For anyone to exchange an authorization code for an access token, two things are required: the client ID and the
client secret. Only the client application knows the client secret. The resource owners will not know the secret and
therefore cannot obtain an access token themselves, even with the authorization code available to the browser. For
this reason, the tokens obtained through this grant type never get leaked to browsers, and hence an authorization
server can optionally return a refresh token. A refresh token is a long-lived token that can be used by a client
application to obtain new access tokens without going through the steps of getting user consent again. I cover refresh
tokens later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

231

Note■■  I t might sound obvious, but there is a point to be clarified here. An end user is the resource owner or the actual user
of your application in production. If you mistake yourself, the developer, as the end user, you might think you know the client
secret and that you can get tokens. In an IT organization that follows the right security procedures, the client secret for the
application running in production will not be known even to the development team that created the application. Only system
administrators will copy those values into a configuration file that gets encrypted, from which your code reads the values.

Implicit Grant
An implicit grant is applicable to user agent-based applications such as JavaScript running under the context of a
web browser. It is a simplified version of an authorization code grant. The access token is immediately returned to the
client application in a hash fragment of the callback URI as soon as the resource owner grants access to the protected
resource. There is no exchange of any code involved. Because the access token is available to the browser and hence
the end user, refresh tokens are not applicable to this grant type. If an access token expires, there is no refresh token
for the client application to automatically obtain a new access token. The client application must again go through the
original steps of asking for user consent and subsequently getting a new access token.

Resource Owner Password Grant
A resource owner password grant might sound like an oxymoron, for the client exchanges the resource owner
password for an access token after receiving the password from the resource owner (end user). This grant type might
give you the impression that it is against the basic premise of OAuth, which is to not share credentials of one application
with another. However, this grant type does have use cases. It is used with clients that a user can trust as well as the
authorization server. For example, if I’m trying to use a web API provided by Google, I’ll be comfortable entering my
Google credentials on a web page hosted in Google. I should be equally comfortable to enter it in a client application if
the client application itself is created by Google, such as an application Google has created to run on my mobile phone.

It is important to note that the client application that is designed to work with this type of grant does not keep
the credentials anywhere. It is obtained from the end user and immediately exchanged for an access token. The client
application must not log the credentials or store it somewhere for later use.

There is a performance benefit to be gained by using this grant type. In the absence of this grant type, the only
available option is to directly send the end user credentials—the user ID and password—to the resource server
while invoking the web API. The resource server (or web API) needs to authenticate the credentials as part of every
single request. This generally means hitting a data store. By using a resource owner password grant, credentials are
exchanged for a token, and the token can contain enough information to establish identity without authentication.

As a simple example, imagine a token containing just the user ID and some additional data, all encrypted and possibly
signed using an HMAC. As long as the web API is able to decrypt and validate the HMAC, it can get the data from the token
and establish identity without hitting the data store. This is easily possible if the resource server and the authorization server
(typically from the same organization) share the same key for encryption and signing. As long as the web API is able to
decrypt and validate the HMAC, it is proof that the token can be trusted. Identity can be established based on that.

Client Credentials Grant
With a client credentials grant, a client application exchanges its own credentials for an access token. This type of
grant applies to scenarios where the protected resource is not owned by a specific user. In the scenario I provided
earlier in this chapter, the resource is the list of “my” contacts. I am a specific user who owns the list. In contrast,
if a resource is not specific to a user and is common to all, a client credentials grant can be used. A good example is
application preferences or things of that nature that can be modified through the API exposed by the resource server.
These preferences are not specific to any individual end user, but applicable only to the client application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

232

This type of grant is also applicable when a user consents to provide access to the protected resource outside
the OAuth flow, perhaps through an out-of-band process, and expects the client to access the protected resource
seamlessly without bothering her for authorization every time. The flow associated with this grant type is referred to
as two-legged because the client interacts with the resource server with no user involvement.

The obvious disadvantage is that this grant type is not suitable for protected resources owned by individual users.
Also, this grant type depends only on the client ID and client secret. If these two are compromised, anyone can get
access tokens and use the web API.

The surface area for the attack can be minimized by keeping the number of APIs that accept tokens obtained
through the client credentials grant as small as possible. Also, you can build additional security on top of this flow by
employing a preshared key.

Access Token
We saw in the preceding scenario involving an e-mail application and the Promotion Manager application that the
client, which is the Promotion Manager application, gets a token. To be more precise, the token is an access token
issued by the authorization server and is based on the authorization granted by the resource owner or by me. The
client accesses the protected resource, which is the list of contacts, by presenting the access token to the resource
server. The resource server validates the access token for freshness and scope.

An access token is just a string representing an authorization granted to the client. Because an access token is
issued by an authorization server and consumed by a resource server, the contents of the token are usually opaque
to the client. The OAuth 2.0 specification neither defines how the access token must be structured or formatted nor
defines how the token must be validated. It is up to the resource server (consumer) and the authorization server
(producer). An access token can be built according to some other specification; for example, an access token can
be a Simple Web Token (SWT) or JSON Web Token (JWT). The OAuth 2.0 specification does refer to a companion
specification RFC 6750, “The OAuth 2.0 Authorization Framework: Bearer Token Usage,” that describes how to use
bearer tokens in HTTP requests to access OAuth 2.0 protected resources.

We briefly looked at the concept of bearer tokens vs. holder-of-key tokens in Chapter 9, with SAML tokens issued by
AD FS. In short, a bearer token is like cash: finders keepers and no questions asked about the ownership. Holder-of-key
tokens require supporting cryptographic material such as a key, symmetric or otherwise, to prove token ownership.

OAuth 1.0 supports cryptographic signatures, which is a must without HTTPS or SSL/TLS (transport security).
OAuth Web Resource Authorization Profiles (WRAP), the predecessor to OAuth 2.0, drops the signature requirements
in favor of transport security and introduces the bearer tokens, making TLS mandatory for such tokens.

Access Token as a Bearer Token
OAuth 2.0 basically specifies ways for different types of clients to obtain an access token from an authorization server
and present the token to a resource server to gain access to a protected resource, which in our case is a web API.
Presenting the access token to a web API can be done in the following three ways.

1.	 HTTP header, using the Authorization HTTP request header, as defined by RFC 2617,
“HTTP Authentication: Basic and Digest Access Authentication,” which we saw in
Chapter 4, to send the access token.

2.	 Message body, using the HTTP request entity-body. RFC 6750 states several conditions
that must be met to use an access token in the request body. One notable condition is that
the entire request body can contain only ASCII characters. Also, there is no request body in
the case of HTTP GET.

3.	 Query string, using the HTTP request URI. RFC 6750 specifies this approach only as the last
resort if the previous two approaches are not feasible, given the security weakness associated
with passing a token in the query string, such as a token getting logged and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

233

Given these three options, the preferred way is to use the HTTP authorization header because it can be
consistently used for all HTTP methods and the request content types of XML, JSON, and headers do not get cached
or logged. In fact, web tokens such as SWT and JWT strive to keep the tokens compact for transportation in the HTTP
authorization request header. SAML tokens, being XML, are not designed for a smaller size; this is one of the reasons
web tokens are favored in the world of RESTful web APIs, as we saw in Chapter 10.

When the access token rides in the HTTP authorization request header, the corresponding scheme used is the
bearer scheme. Listing 11-1 shows an example of a request header using a bearer scheme.

Listing 11-1.  HTTP Authorization Header Bearer Scheme 

GET /api/employees/12345 HTTP/1.1
Host: my-server.com
Authorization: Bearer DFJQNC694GisUrPVZap5pdyWLohFK== 

Refresh Token
Refresh tokens are issued to the client by the authorization server along with an access token. The purpose of a
refresh token is for the client application to present the refresh token to the authorization server and obtain a new
access token when the current access token becomes invalid. Like an access token, a refresh token is just a string
representing an authorization granted to the client, and the content of the refresh token is opaque to the client.
However, unlike an access token, a refresh token is never presented to a resource server and is meant to be used only
with the authorization server.

A refresh token is the distinguishing attribute of an authorization code grant, which is applicable to a web
application (a confidential client). Compared to an implicit grant, an authorization code grant is a bit complex. There
is an extra step of exchanging the code for tokens. The specifications like OAuth were created by a bunch of smart
people, after a lot of thinking and deliberation! They didn’t include an extra step for no reason. This extra step, or
the abstraction, is to make sure tokens stay only within the server side of the web application. As mentioned in the
previous section, all the user agent or the end user gets to see is the authorization code, which has no value on its own
unless it is sent along with the client secret to exchange it for a token. For this reason, even the resource owner who
grants the access to the resource will not have access to the token.

Why should you be careful to ensure the tokens do not get passed to the browser or the end user? The reason is
the refresh token. A refresh token is a long-lived token, whereas an access token has a short life span. However, using
the refresh token, a valid access token can be obtained from an authorization server without getting the user’s consent
to share the protected resource. Hence, a refresh token is a prized possession. Because of its long life, a refresh
token can be saved by client web applications for later use. Because of the security implications related to refresh
tokens, they are not issued with an implicit grant, which does not have that abstracting step of an authorization code
exchange.

Why have an additional refresh token? Why not just make the access token long lived? As Eran Hammer stated in
response to these types of questions in a forum, the reasons are for security and performance.

1.	 From a security standpoint: With bearer tokens, TLS (HTTPS) is a must. But even with
that, it is not as good as a holder-of-key token that has cryptographic backup. For the sake
of argument, imagine a token landing in the hands of a malicious user. If the token has
message security implemented through encryption and signing using keys shared out of
band, a man-in-the-middle or unintended recipients can do little with it because message
security ensures end-to-end security. Transport security is a great option, and it is not
possible to get the token out of the transport channel, but it cannot guarantee end-to-end
security. So with the bearer token being comparatively weaker, giving it a short life span
reduces the window of opportunity for misuse by a malicious user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

234

2.	 From a performance standpoint: For revoking the access granted, authorization
providers typically provide a web site. To be revoked, the token has to be invalidated. This
means authorization providers have to store the access tokens in some persistent store
and hit it for every web API request to see if the grant has been revoked or if it is still valid.
No one wants to do this for performance reasons. Instead, they just keep the lifetime of the
access token relatively small and let it die its natural death at the hands of time, when the
previously granted access is revoked.

However, the authorization providers must store the refresh token because a subsequent request can come
through to get a new access token based on it. But those requests are not as frequent as the actual API calls, and they
can remove the refresh token from their data store when access is revoked.

Using Live Connect APIs
We have had quite a bit of theory on OAuth 2.0 so far. We now look at using OAuth 2.0 to consume Live Connect APIs
from an ASP.NET MVC application. Live Connect is a collection of REST-based APIs that Microsoft provides so that we
can integrate any application with services like SkyDrive, Hotmail, and Messenger.

I can write pages after pages of theory, but unless you see OAuth in action through a couple of examples it will be
difficult to appreciate the theory. At this point, we are on the other side of the table. That is, we are the client trying to
use Live Connect APIs. We are not yet at the point where we can implement authorization in our ASP.NET Web API.
We will move to the other side of the table as soon as we are comfortable on this side of the table!

Registering Your Application in the Live Connect Portal
Before you can do anything with Live Connect, you must create an entry for your application in the Microsoft Live
Application Management portal. The URL is https://manage.dev.live.com. Of course, you do need a Live ID to even
log into the management portal. The following steps show how to register your application.

1.	 After logging into the portal, you will land on a page, as shown in Figure 11-1. Give a name
to the application and click I accept.

Figure 11-1.  Registration in the Application Management portal

www.it-ebooks.info

https://manage.dev.live.com/
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

235

2.	 That creates the application and puts you on the next screen, shown in Figure 11-2.
On this page, we are interested in the client ID and client secret. We will use them in our
code. In the Redirect domain text box, you must enter a valid domain. You cannot use
http://localhost, for example. The portal is unforgiving and needs a valid domain
name. If you own one, you can go ahead and use your domain name, such as
http://www.my-server.com. If you don’t have a valid domain, you can trick the browser
on your computer into thinking that it is going to www.my-server.com by making an entry
in the hosts file. You can find the file in C:\Windows\System32\drivers\etc. The file
name is hosts, without any extension. Just add an entry, 127.0.0.1 www.my-server.com,
to the file. If you now ping www.my-server.com, it will ping 127.0.0.1. In other words, Live
Connect is happy that you have provided a proper domain name, and your browser will be
happy because it will be able to resolve the server address to an IP, which happens to be
your loopback IP. Leave the No radio button selected for Mobile client app.

Figure 11-2.  API settings

Using an Implicit Grant to Access Live Connect
Now we are all set to see OAuth 2.0 in action. We start by looking at an implicit grant, as that is the simplest flow. You
might recall from an earlier section that the implicit grant type is applicable to user agent-based applications such as
JavaScript running under the context of a web browser, and that there is no authorization code to exchange, which will
keep things simple for starters.

I use a basic ASP.NET MVC application for illustration. I use two action methods within HomeController: Index
and Parse. As part of the view corresponding to the Index action method, I have JavaScript code to make a token
request to the Live Connect authorization endpoint https://login.live.com/oauth20_authorize.srf, specifying
the other action method /Home/Parse as the callback URI. Live Connect redirects the browser to the callback URI,
passing the token in the hash fragment. The JavaScript rendered by /Home/Parse picks up this token, makes a call to
Live Connect, and displays the data returned by the API, which in this case is the name of the user. The following steps
summarize the process that happens as part of the implicit grant flow.

www.it-ebooks.info

http://localhost/
http://www.my-server.com/
http://www.my-server.com/
http://www.my-server.com/
http://www.my-server.com/
http://www.my-server.com/
https://login.live.com/oauth20_authorize.srf
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

236

1.	 The client application, which in this case is the ASP.NET MVC application, starts the flow
by directing the user’s browser to the Live Connect authorization endpoint, passing in the
client ID, the scopes, a redirection URL, and a value of the token for response_type in the
query string.

2.	 The user is prompted to enter her Live Connect credentials, and after authentication the
user grants or denies the client’s access request.

3.	 Live Connect redirects the browser to the URI specified in the initial request. As part of the
URI, an access token is passed in the URI fragment like this: http://www.my-server.com/
OAuthLiveAPI/Home/Parse#access_token=<token>.

4.	 The browser follows the redirect by making the request to the server. In our case, the GET
request is made to/Home/Parse, the Parse action method runs, and the corresponding
view is sent back to the browser. URI fragments are not sent to the server.

5.	 The HTML returned to the browser as a result of the rendering of the /Home/Parse view
contains the necessary JavaScript to read the fragment and extract the token. In our
example, location.hash.slice(1) is the code that does it, although it is too simple to
handle any other elements returned or the error.

Once the token is extracted, a call to the API can be made using the token. Figure 11-3 illustrates the preceding
steps of the implicit grant flow to obtain the access token.

ASP.NET MVC App
(Client Application)

Browser

Token request
JavaScript picks up the
 token in URL fragment

Browser redirected
 to callback URI

User Authentication

Token returned in
URI fragment

2

1

3

4

Live Connect

5

Figure 11-3.  Implicit grant

The following detailed steps show the use of an implicit grant flow to obtain an access token from Live Connect
and subsequently call the Live Connect API, presenting the token as the credential.

1.	 Launch Microsoft Visual Studio as an administrator and create a basic ASP.NET MVC
project with the name OAuthLiveAPI. We will limit our changes to only the views. There
is no real need for an MVC project here, but it will make life a bit easier because Visual
Studio can create a virtual directory for us in local IIS. You can create static HTML pages
and put them in a virtual folder if you would like.

www.it-ebooks.info

http://www.my-server.com/OAuthLiveAPI/Home/Parse#access_token=%3Ctoken
http://www.my-server.com/OAuthLiveAPI/Home/Parse#access_token=%3Ctoken
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

237

RUNNING ON IIS
 

I’m using a local IIS server to run this application so that I don’t need to deal with ports. To open the code sample
that accompanies this book, you must run Visual Studio as an administrator and open the solution file for the
project to load correctly. As a reminder, you can find the code samples in the Source Code/Download area of the
Apress web site at www.apress.com.

If you run IIS 7.0 or IIS 7.5, your IIS could have difficulty handling extension-less URLs that are common with
ASP.NET MVC and web API. You can install a hot fix (http://support.microsoft.com/kb/980368) to resolve
this issue or you can set runAllManagedModulesForAllRequests="true" in the web.config file, as shown here.
 
<system.webServer>
 . . .
<modules runAllManagedModulesForAllRequests="true"/>
</system.webServer>
 
For more information on routing, refer to Thomas Marquardt’s MSDN blog entry,” How ASP.NET MVC Routing
Works and its Impact on the Performance of Static Requests.”

2.	 Add a HomeController and create the view for /Home/Index. Right-click the Index action
method in Visual Studio and select Add View… to create the view. Delete the entire
content of the view and copy and paste the code from Listing 11-2. It just runs JavaScript to
format a URL with a bunch of query strings and redirects you to that URL. It is important
to note that the query string field names are coming out of the specification. You need to
use exactly the same names with correct values, as defined in the specification, for the
protocol to work.

a.	 The client identifier is copied and pasted from the application management portal.

b.	 The redirect URI is where Live Connect will put us back after obtaining user consent.
It is given as /Home/Parse. For this to work, we do need to provide a /Home/Parse
controller action method.

c.	 The scope defines the things the user would like to authorize you to access. Here
the list is hard-coded, but it is generally based on what the user has consented to
authorize.

d.	 The response type is hard-coded to “token.”

Listing 11-2.  Index View 

@section scripts{
<script type="text/javascript">
 $(document).ready(function () {
 var clientId = 'copy paste your client id here';
 var redirectUri = 'http://www.my-server.com/OAuthLiveAPI/Home/Parse';
 var scope = 'wl.signin%20wl.basic';
 
 var url = 'https://login.live.com/oauth20_authorize.srf';
 url += '?response_type=token&redirect_uri=' + redirectUri;

www.it-ebooks.info

http://www.apress.com/
http://support.microsoft.com/kb/980368
http://www.my-server.com/OAuthLiveAPI/Home/Parse
https://login.live.com/oauth20_authorize.srf
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

238

 url += '&client_id=' + clientId + '&scope=' + scope;
 
 document.location.href = url;
 
 });
</script>
}
 

3.	 Create a new action method Parse that does nothing but returns the view - public
ActionResult Parse() { return View(); }. In the view, shown in Listing 11-3, extract
the access token from the hash and simply stick the access token in the query string of
the URL of the API. The code is ultra-simple. It neither handles the case of a user denying
access nor other extra fields coming as part of the location hash. After you put the token
into the URL, use JQuery to make a GET to the API and show the name of the user in a div.
Use getJSON()for this because Live Connect returns a JSON response.

Listing 11-3.  Parse View 

@section scripts{
<script type="text/javascript">
 $(document).ready(function () {
 var url = 'https://apis.live.net/v5.0/me?' + location.hash.slice(1);
 
 $.getJSON(url, function (data) {
 $('#data').html(data.name);
 });
 });
</script>
}
 
<div id="data"></div> 

Note■■  T he Parse.cshtml razor view uses the JQuery getJSON method to get the API response from Live Connect.
We are trying to access https://apis.live.net from JavaScript running under the context of my-server.com, which is
against the same origin policy that we saw in Chapter 5. Because the XDomainRequest object must be used with Internet
Explorer for cross-site scripting, we must use an alternative browser like Mozilla Firefox to run this code. If you must use
Internet Explorer 9.0 or lower, then it gets a bit tricky. You have to use XDR for sure, but it needs the requestor URI and
requested URI to use the same scheme. Because apis.live.net is in HTTPS, you must run this MVC application from IIS with
HTTPS enabled for XDR to work. Or you can include $.support.cors = true; and simply enable cross-domain requests.

Testing the ASP.NET MVC Application
If you run the MVC application, you will start with /Home/Index. There is no code in the controller to execute other
than returning the corresponding view. In the view, however, you get redirected to the Live Connect authorization
endpoint of /oauth20_authorize.srf, using JavaScript.

If you are not logged in, Live Connect will prompt you for your user ID and password. The important point
to note here is that you are providing the credentials only with Live Connect and not anywhere in the JavaScript.

www.it-ebooks.info

https://apis.live.net/v5.0/me
https://apis.live.net/
http://www.it-ebooks.info/

API

239

Next, it will ask you to grant the authorization rights, as shown in Figure 11-4. Because we have used wl.signin and
wl. Basic, Live Connect asks for permission for these two things. Click the Yes button to grant access.

Figure 11-4. Live Connect asking the user to grant access

After you grant the rights, Live Connect sends back an access token corresponding to the scope. It puts you in
the redirect URI, which is /Home/Parse, and sends the token in the location hash, which looks something like this:
http://www.my-server.com/OAuthLiveAPI/Home/Parse#access_token=<token>. Corresponding to this GET,
the Parse method of the Home controller runs and renders the JavaScript to pick up the token from the URI fragment.
It then invokes the Live Connect API to get the user name as JSON and shows that in the page.

Using an Authorization Code Grant to Access Live Connect
Similar to an implicit grant, I use an ASP.NET MVC application as the client application that uses the authorization
code grant to obtain an access token from Live Connect. Unlike an implicit grant, the client application must be a web
application, which is a confidential client. I use two action methods within HomeController:Login and Exchange.
The Login method redirects the browser to the Live Connect authorization endpoint through a server-side redirect,
making a request for an authorization code. Live Connect returns the authorization code in the query string by
redirecting to the callback URI specified in the request. The callback URI corresponds to the second action method,
which is the Exchange method. It retrieves the token and makes the call to Live Connect API. In sharp contrast to the
code we wrote for an implicit grant, where everything is done at the client side, here we write all the code on the server
side (the controller). The following process happens as part of the authorization code grant flow.

The client, which is the ASP.NET MVC application, starts the flow by directing the browser of the end user to the
Live Connect authorization endpoint, passing in the client ID, the scopes, the redirect URI, and a value of “code” for
the response_type field in the query string.

www.it-ebooks.info

http://www.my-server.com/OAuthLiveAPI/Home/Parse%23access_token=%3ctoken%3e
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

240

1.	 Live Connect shows the login screen to the user, authenticates the credentials entered, and
asks the user for consent to share the protected resource.

2.	 When the user grants access, Live Connect redirects the browser to the redirection URI
specified in the initial request, which is /Home/Exchange. Live Connect specifies a query
string with the authorization code.

3.	 The browser makes a GET to the URI /Home/Exchange?code=authzcode.

4.	 The Exchange action method has a parameter named code, to which the authorization
code is bound by the MVC framework. Using the code, client ID, client secret, the redirect
URI used before, and the grant_type of the authorization_code, the client MVC application
makes a POST to the Live Connect authorization endpoint.

5.	 Live Connect validates the input—the authorization code, client ID, client secret, and so
on—and returns a JSON response containing access and refresh tokens. The refresh tokens
are stored for future use.

Using the access token, the MVC web application makes a request to the Live Connect web API passing in the
access token. Figure 11-5 illustrates the preceding steps of the authorization code grant flow to obtain an access token.

Browser redirected to
callback URI with code

in the query string

Authz code request1

2

3

User Authentication

Code returned in
query stringController picks up the

token and requests
for code to be
exchanged to a token

Access token is returned
ASP.NET MVC App
(Client Application)

Live Connect

Browser

6

5

4

Figure 11-5.  Authorization code grant flow

Following are the detailed steps that show you the use of the authorization code grant flow to obtain an access
token from Live Connect and subsequently call the Live Connect API, presenting the token as the credential.

1.	 Launch Microsoft Visual Studio as an administrator.

2.	 Use the same ASP.NET MVC application we created in the preceding section about
implicit grants.

3.	 Add an action method Login to HomeController, as shown in Listing 11-4. The logic is very
simple, as shown in the following steps.

a.	 Build a URI based on the same authorization endpoint that we have been working on:
https://login.live.com/oauth20_authorize.srf.

b.	 The query string parameters are exactly the same as those we used with the implicit
grant, except for one difference: The value for the field response_type is “code,”
standing in for the authorization code.

www.it-ebooks.info

https://login.live.com/oauth20_authorize.srf
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

241

c.	 Specify another action method, Exchange, as the redirect URI.

d.	 Pass in a new scope wl.offline_access for the authorization endpoint to return a
refresh token. The details on using a refresh token are covered in a later section.

e.	 Finally, redirect to the URI of the Live Connect authorization endpoint.

Listing 11-4.  Login Action Method 

public ActionResult Login()
{
 string clientId = "your client Id";
 string redirectUri = "http://www.my-server.com/OAuthLiveAPI/Home/Exchange";
 string scope = "wl.signin%20wl.basic%20wl.offline_access";
 
 string url = "https://login.live.com/oauth20_authorize.srf";
 url += "?response_type=code&redirect_uri={0}&client_id={1}&scope={2}";
 
 url = String.Format(url, redirectUri, clientId, scope);
 
 return Redirect(url);
} 

Note■■   Because the /Home/Index action method is already used for the implicit grant flow, you need to make a
change to RouteConfig.cs in the App_Start folder to make the Login method the default action. You need to do this
so that when you run the application it starts with /Home/Login and hence starts the authorization code flow. Edit
routes.MapRoute() to set the defaults like this: defaults: new { controller = "Home", action = “Login”,
id = UrlParameter.Optional }.

4.	 Add the action method Exchange, as shown in Listing 11-5. The authorization code that
is sent by Live Connect is available to you through the parameter named code. If you are
not experienced in ASP.NET MVC, here is a brief primer on binding: MVC binds the action
method parameters to the incoming data, the form fields, or the query string; by binding,
it pulls the value out of those elements and puts them here in the parameters. How
convenient!

Listing 11-5.  Exchange Action Method 

public ActionResult Exchange(string code)
{
 string result = String.Empty;
 
 // Remainder of the code goes here - look at the following steps
}
 

5.	 Use the authorization code and make an HTTP POST to the authorization endpoint using
an instance of the HttpClient class, as shown in Listing 11-6. One important point to
note in the HTTP POST is that the client secret is passed. As mentioned in the preceding
section, this is the secret sauce that is known only to the client application, which ensures

www.it-ebooks.info

http://www.my-server.com/OAuthLiveAPI/Home/Exchange
https://login.live.com/oauth20_authorize.srf
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

242

no other entity except the client application can obtain an access token. Along with the
client secret, other parameters like client ID, the redirect URI, the authorization code this
action method receives as a parameter, and a grant type of “authorization_code” are sent
in the request body.

Listing 11-6.  Exchange Code for a Token 

using (HttpClient client = new HttpClient())
{
 var postData = new List<KeyValuePair<string, string>>();
 postData.Add(new KeyValuePair<string, string>("client_id", "your client id"));
 postData.Add(new KeyValuePair<string, string>("redirect_uri",
 "http://www.my-server.com/OAuthLiveAPI/Home/Exchange"));
 postData.Add(new KeyValuePair<string, string>("client_secret", "your client secret"));
 postData.Add(new KeyValuePair<string, string>("code", code)); // retrieved from query string
 postData.Add(new KeyValuePair<string, string>("grant_type", "authorization_code"));
 
 HttpContent content = new FormUrlEncodedContent(postData);
 
 var tokenResponse = client.PostAsync("https://login.live.com/oauth20_token.srf", content)

.Result;
 
 if (tokenResponse.IsSuccessStatusCode)
 {
 // Use the token - look atthe following steps
 }
} 

Note■■  I n Listing 11-6, the client ID and the client secret are sent in the message body. OAuth 2.0 does allow these two
getting sent, respectively, as the user ID and password in the HTTP authorization request header using the basic scheme.

6.	 Live Connect sends back a JSON response, as shown in Listing 11-7. The tokens are
trimmed for brevity.

Listing 11-7.  JSON Response from Live Connect 

{
 "token_type":"bearer",
 "expires_in":3600,
 "scope":"wl.signin wl.basic wl.offline_access",
 "access_token":"EwAw. . .YAAA=",
 "refresh_token":"CicFtyZ. . .pl7UCp",
 "authentication_token":"eyJh. . .3Rhg1C80E"
}
 

www.it-ebooks.info

http://www.my-server.com/OAuthLiveAPI/Home/Exchange
https://login.live.com/oauth20_token.srf
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

243

7.	 Parse the JSON response and extract the access token using System.Json. You need to
get it through NuGet. Right-click References of the project in Solution Explorer of Visual
Studio and click Manage NuGet Packages. Click Online ➤ All, search for ‘System.Json,’ and
install it (see Figure 11-6).

Figure 11-6.  System.Json NuGet

8.	 After extracting the token, invoke the Live Connect API passing on the token and get back
the result, which is once again JSON. See Listing 11-8.

Listing 11-8.  Extracting a Token and Calling Live Connect API 

var token = tokenResponse.Content.ReadAsStringAsync().Result;
 
JsonValue value = JsonValue.Parse(token);
string accessToken = (string)value["access_token"];
 
var apiResponse = client
 .GetAsync("https://apis.live.net/v5.0/me?access_token=" + accessToken)
 .Result;
 
if (apiResponse.IsSuccessStatusCode)
{
 result = apiResponse.Content.ReadAsStringAsync().Result;
} 
 

9.	 Parse the response JSON from Live Connect API, retrieve the name, and return that as the
text output. There is no view associated with the action method. The text value returned is
just rendered by the browser. See Listing 11-9.

Listing 11-9.  Returning the API Response to View 

if (String.IsNullOrEmpty(result))
 return new EmptyResult();
else
 return Content((string)JsonValue.Parse(result)["name"]);
 

www.it-ebooks.info

https://apis.live.net/v5.0/me?access_token
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

244

Testing the ASP.NET MVC Application
If you run the MVC application, you will start off with /Home/Login, because Login is configured as the default action
now. At this point, the user (in other words, the resource owner) is redirected to the Live Connect login screen to enter
the credentials. Once Live Connect authenticates the user, a screen is displayed to the user asking for consent, as
shown in Figure 11-7.

Figure 11-7.  Live Connect asking a user to grant access

In the preceding section of the implicit grant, the scopes sent in are wl.signin and wl.basic. For an authorization
code grant, an additional scope of wl.offline_access is also passed. The screenshot in Figure 11-7 shows three entries
corresponding to the scopes in the request, when Live Connect asks the user for consent to share. The importance of
this additional scope is that Live Connect returns the refresh token for this scope. I cover the use of a refresh token to
get an access token in a later section.

When the user clicks the Yes button, the browser is redirected to http://www.my-server.com/OAuthLiveAPI/
Home/Exchange?code=<authz code> . The authorization code is sent in the query string. The Exchange action method
receives the code, exchanges it for an access token, and subsequently invokes Live Connect API passing the token.

Note■■  U nlike an implicit grant, an authorization code grant never exposes the access and refresh tokens to the
browser. Even the resource owner will not be able to see the tokens. Only the authorization code is visible to the browser
and resource owner.

www.it-ebooks.info

http://www.my-server.com/OAuthLiveAPI/Home/Exchange?code=%3cauthz%20code%3e
http://www.my-server.com/OAuthLiveAPI/Home/Exchange?code=%3cauthz%20code%3e
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

245

Using a Refresh Token to Obtain an Access Token
A refresh token is sent along with the access token in the authorization code grant when the client makes a request to
the authorization server to exchange the authorization code for an access token. A refresh token can be used to obtain
a new access token without asking the user once again for consent, which I show here.

I showed you in the preceding section how to use System.Json to parse the JSON response from the
authorization server and extract the access token. Listing 11-10 shows the same code that we saw in Listing 11-8, but
modified to get the refresh token. The additional lines of code are shown in bold type. The refresh token is added into
a dictionary using a hard-coded key of “userId”. That is done basically to illustrate how refresh tokens can be used. In
practice, refresh tokens are stored in a persistent store because they are long-lived.

Listing 11-10.  Extracting a Refresh Token 

var token = tokenResponse.Content.ReadAsStringAsync().Result;
 
JsonValue value = JsonValue.Parse(token);
string accessToken = (string)value["access_token"];
string refreshToken = (string)value["refresh_token"];
 
tokens["userId"] = refreshToken;
 
var apiResponse = client
 .GetAsync("https://apis.live.net/v5.0/me?access_token=" + accessToken)
 .Result;
 
if (apiResponse.IsSuccessStatusCode)
{
 result = apiResponse.Content.ReadAsStringAsync().Result;
}
 

Of course, the client ID and client secret are needed, but the user does not have to give his consent for this refresh
process because it is done automatically. Having said that, Live Connect does ask the user at the point when it asks for
the user’s consent for the first time (see the third item in Figure 11-7).

Now let’s see how to get an access token from a refresh token. See Listing 11-11. The logic is similar to the logic
of getting an access token. Note the use of “refresh_token” as the grant type as against “authorization_code” while
exchanging the authorization code for an access token. The refresh token must be sent in for obvious reasons.
Also, note the client secret is needed for this, just like the code-to-token exchange. The response from Live Connect
contains the access token, which is extracted out, similar to the earlier code for the code-to-token exchange.

Listing 11-11.  Access Token from a Refresh Token 

public ActionResult Refresh()
{
 string result = String.Empty;
 
 using (HttpClient client = new HttpClient())
 {
 var postData = new List<KeyValuePair<string, string>>();
 postData.Add(new KeyValuePair<string, string>("client_id", "your client id"));
 postData.Add(new KeyValuePair<string, string>("redirect_uri",

"http://www.my-server.com/OAuthLiveAPI/Home/Exchange"));

www.it-ebooks.info

https://apis.live.net/v5.0/me?access_token
http://www.my-server.com/OAuthLiveAPI/Home/Exchange
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

246

 postData.Add(new KeyValuePair<string, string>("client_secret", "your client secret"));
 postData.Add(new KeyValuePair<string, string>("refresh_token", tokens["userId"]));
 postData.Add(new KeyValuePair<string, string>("grant_type", "refresh_token"));
 
 HttpContent content = new FormUrlEncodedContent(postData);
 
 var tokenResponse = client.PostAsync("https://login.live.com/oauth20_token.srf", content)

 .Result;
 
 if (tokenResponse.IsSuccessStatusCode)
 {
 var token = tokenResponse.Content.ReadAsStringAsync().Result;
 
 JsonValue value = JsonValue.Parse(token);
 string accessToken = (string)value["access_token"];
 
 var apiResponse = client.GetAsync("https://apis.live.net/v5.0/me?access_token=" +

accessToken).Result;
 if (apiResponse.IsSuccessStatusCode)
 {
 result = apiResponse.Content.ReadAsStringAsync().Result;
 }
 }
 }
 
 if (String.IsNullOrEmpty(result))
 return new EmptyResult();
 else
 return Content("Refreshed " + (string)JsonValue.Parse(result)["name"]);
}
 

Note■■  T he authorization code grant ensures that access and refresh tokens are confined only to the server-side
component of the client web application. I used an ASP.NET MVC application, and all the code is implemented on the
server side. Now, what if you implement the authorization code grant in JQuery on the client side? No one can check
how you are making requests to the endpoint from a server-side program or a client-side program. But the OAuth 2.0
specification specifies things for a reason. You can go right ahead and break the standard, but your implementation in
that case is not only noncompliant to OAuth 2.0 but also leaves your implementation vulnerable to attacks.

www.it-ebooks.info

https://login.live.com/oauth20_token.srf
https://apis.live.net/v5.0/me?access_token
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

247

Revoking the Grant
Once a resource owner or a user grants access, it is not cast in stone. There are scenarios where a user would like to
revoke the grant. For this purpose, Microsoft provides a portal where grants provided by a resource owner can be
revoked. The URL is https://consent.live.com. See Figure 11-8.

Figure 11-8.  Revoking the grant

To revoke the access granted, select all the check boxes and click Revoke access. This invalidates the refresh
token, and anymore requests for a new access token based on the refresh token will fail.

Using a Resource Owner Password Grant
Live Connect does not support a resource owner password grant type. If it did, the flow would be the same as the
following list of steps.

1.	 The client application, which is generally a native application created by the same
organization that owns the resource server, shows a screen to the user where credentials
can be entered.

2.	 The user enters the credentials directly in the client application, knowing full well that
she is entering the credentials in a client application. The user is confident the client
application is also from the same entity that hosts the resource and hence is trustworthy.

3.	 The client makes a POST to the authorization endpoint, sending the credentials along with
the grant_type of password.

4.	 The authorization server validates the request and returns the access token.

Figure 11-9 illustrates this process.

www.it-ebooks.info

https://consent.live.com/
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

248

If you write code to use a resource owner password grant to obtain an access token from Live Connect, it will
be similar to the one shown in Listing 11-12. The grant type (grant_type) of the password is passed in the request
along with the other usual elements, like client ID and client secret. The credentials of the resource owner are sent in
the message body, and the client ID and client secret are sent in the HTTP authorization header. Depending on the
implementation, everything can get sent in the message body. Regardless of the implementation, one thing for sure
with these calls is that they must make use of transport security.

Listing 11-12.  Resource Owner Password Grant 

using (HttpClient client = new HttpClient())
{
 string creds = String.Format("{0}:{1}", "your client id", "your client secret");
 byte[] bytes = Encoding.UTF8.GetBytes(creds);
 var header = new AuthenticationHeaderValue("Basic", Convert.ToBase64String(bytes));
 client.DefaultRequestHeaders.Authorization = header;
 
 var postData = new List<KeyValuePair<string, string>>();
 postData.Add(new KeyValuePair<string, string>("username", "jqhuman"));
 postData.Add(new KeyValuePair<string, string>("password", "p@ssw0rd"));
 postData.Add(new KeyValuePair<string, string>("grant_type", "password"));
 postData.Add(new KeyValuePair<string, string>("scope", "wl.signin wl.basic"));
 
 HttpContent content = new FormUrlEncodedContent(postData);
 
 var httpMessage = client.PostAsync("https://authorizationserver.com/endpoint", content).Result;
 
 if(httpMessage.IsSuccessStatusCode)
 Console.WriteLine(httpMessage.Content.ReadAsStringAsync().Result);
} 

Client
Application

Resource Owner
(End User)

Authorization
Server

Generally a native
application

3

42

1

Figure 11-9.  Resource owner password grant

www.it-ebooks.info

https://authorizationserver.com/endpoint
http://www.it-ebooks.info/

API

249

Using a Client Credentials Grant
Live Connect does not support the client credentials grant. However, the flow is very simple, as shown in the
following steps.

1. The client application makes a POST to the authorization server endpoint, sending the
client ID, the client secret, and the grant_type of client credentials.

2. The authorization server returns the access token, after validating the client ID and
client secret.

Listing 11-13 shows code that illustrates the use of a client credentials grant to obtain an access token.

Listing 11-13. Client Credentials Grant

using (HttpClient client = new HttpClient())
{
 string creds = String.Format("{0}:{1}", "your client id", "your client secret");
 byte[] bytes = Encoding.UTF8.GetBytes(creds);
 var header = new AuthenticationHeaderValue("Basic", Convert.ToBase64String(bytes));
 client.DefaultRequestHeaders.Authorization = header;

 var postData = new List<KeyValuePair<string, string>>();
 postData.Add(new KeyValuePair<string, string>("grant_type", "client_credentials"));

 HttpContent content = new FormUrlEncodedContent(postData);

 var httpMessage = client.PostAsync("https://authorizationserver.com/endpoint", content).Result;

 if(httpMessage.IsSuccessStatusCode)
 Console.WriteLine(httpMessage.Content.ReadAsStringAsync().Result);
}

As shown in the preceding example, the client ID and client secret, respectively client_id and client_secret, can
get passed in the message body in some implementations, unlike being passed in the HTTP authorization header.

Summary
For SOAP-based web services, WS-Trust and WS-Security provide a standard way for a client application to request
and obtain a security token and then present it to the relying party SOAP-based web service as a credential for
authentication. In the world of REST to which ASP.NET Web API belongs, OAuth is the specification comparable to
WS-Trust and WS-Security. OAuth 1.0 was the initial version created in 2006, and it evolved into the OAuth 2.0 of
today, with no backward compatibility to OAuth 1.0. The coverage of OAuthin this book is limited to OAuth 2.0
(RFC 6749, “The OAuth 2.0 Authorization Framework”).

OAuth stands for open authorization. The heart of the OAuth specification is the access token. OAuth specifies
how a client application can request an access token from the authorization server by itself or by orchestrating
an approval interaction between the resource owner or the end user and the underlying web application.
An authorization grant is the credential representing the resource owner’s consent to allow or grant access to the
protected resources. A client application uses the authorization grant to obtain an access token. The OAuth 2.0
specification defines four out-of-the-box grant types.

www.it-ebooks.info

https://authorizationserver.com/endpoint
http://www.it-ebooks.info/

Chapter 11 ■ OAuth 2.0 Using Live Connect API

250

1.	 Authorization code grant, which is applicable to the web application profile, the code that
executes in a server.

2.	 Implicit grant, which is applicable to user agent-based applications such as JavaScript
running under the context of a web browser.

3.	 Resource owner password grant, which can be used only with the clients that a user can
trust as well as the authorization server.

4.	 Client credentials grant, which is applicable to scenarios where the protected resource is
not owned by a specific user but by the client application itself.

The OAuth 2.0 specification refers to the companion specification RFC 6750, “The OAuth 2.0 Authorization
Framework: Bearer Token Usage,” which describes how to use an access token as a bearer token in the authorization
HTTP request header to access OAuth 2.0 protected resources.

Microsoft Live Connect implements the OAuth 2.0 protocol to authenticate users. I used Live Connect API in this
chapter to demonstrate OAuth 2.0 in action.

www.it-ebooks.info

http://www.it-ebooks.info/

251

Chapter 12

OAuth 2.0 from the Ground Up

In this chapter, I show you how to implement OAuth 2.0–based authorization in ASP.NET Web API from scratch,
using two ASP.NET MVC web applications, so that you understand the nuts and bolts of OAuth 2.0. The objective of
this chapter is to help you gain in-depth knowledge of how the authorization code grant type of OAuth 2.0 works by
building a working example from the ground up. I focus my coverage on the authorization code grant type for this
exercise because it involves a more complex flow than the other grant types.

Although I show you how to build from scratch in this chapter, I do not suggest that you build OAuth 2.0 this
way for your applications. There is a great open source .NET Framework library, DotNetOpenAuth (DNOA), that you
can use to implement OAuth 2.0–based authorization in ASP.NET Web API. I cover DNOA in depth in Chapter 13.
However, building from scratch—although it is hard work—helps you appreciate how a library such as DNOA can help
you in your implementation. Also, when things do not work the way they are supposed to, it gives you the confidence
to pop the hood and take a look at what is going on inside.

Keep in mind that some enterprises might restrict the use of open source in production. For that or any other
reason, if you wish to write your own implementation this chapter lays the groundwork for you to build on.

Scenario: Sharing Contact Information
Our scenario in this chapter is similar to the scenario in Chapter 11: An end user, John Q. Human, wants to share the
contact information contained in his contacts application with the Promotion Manager application. However, he
doesn’t want to divulge to the Promotion Manager application the login credentials he uses to access the contacts
application. Table 12-1 shows the OAuth 2.0 roles, along with the players, for this scenario.

Table 12-1.  OAuth 2.0 Roles

OAuth 2.0 Role Player

Resource owner The resource owner (in this case, the user) is John Q. Human, a small-time retail store
owner who maintains all his customer contact information. He is not willing to share his
my-contacts.com login credentials with the third party my-promo.com for fear of
business-critical data leaking to his competition.

Resource server The resource server, www.my-contacts.com/contacts/api/contacts, exposes the contact
information in the form of a web API implemented using ASP.NET Web API. The protected
resource is the contact information.

Authorization server The authorization server, www.my-contacts.com/contacts/OAuth20, works with the
resource owner to get consent and ultimately creates and sends a token, which the client
can present to the resource server and access the contact information.

Client The client is the Promotion Manager application, www.my-promo.com/promo, which is an
ASP.NET MVC 4.0 web application. John uses this application to send promotional e-mails.

www.it-ebooks.info

http://my-contacts.com
http://my-promo.com
http://www.my-contacts.com/contacts/api/contacts
http://www.my-contacts.com/contacts/OAuth20
http://www.my-promo.com/promo
Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

252

Note■■   I do not own the domains my-contacts.com and my-promo.com mentioned in Table 12-1. I use them so you
clearly know where you are in terms of the application (as indicated by the browser in the URL bar) when you test the
flow. A name is better for recognizing an application than the port numbers. I use the same hosts file trick that I showed
you in Chapter 11 to add two entries with these names both pointing to 127.0.0.1. If you are a user of the real sites with
these addresses, you will need to remove the entries from the hosts file once you are done testing. Also, if you are lucky
enough to be able to spend time at work running these applications from a work computer that is behind a proxy,
you might need to bypass the proxy for these addresses for the hosts file trick to work.

There are two major flows associated with our scenario.

1.	 Contacts Manager flow—The user logs in directly into Contacts Manager using the
credentials and manages the contacts, such as viewing, adding, editing, and removing
contacts.

2.	 Promotion Manager flow—This involves sharing contact information. This is the more
important flow to us because this is where ASP.NET Web API figures in. The user goes
to the Promotion Manager application and performs an action that requires the contact
information from the Contacts Manager application. In our example scenario, this action
will be a user clicking a button to get contact information. Promotion Manager redirects
the user to the Contacts Manager, where the user is asked to provide credentials and
authenticate before Contacts Manager consents to share the contacts information with
Promotion Manager. On consent, Promotion Manager pulls the contact information using
the web API provided by Contacts Manager and displays the list to the user.

Figure 12-1 illustrates the Promotion Manager flow. We have not gotten into the implementation details yet,
but the screenshots will help you get an overall picture of the steps involved.

Figure 12-1.  Promotion Manager flow

www.it-ebooks.info

http://my-contacts.com
http://my-promo.com
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

253

Design
We will create two ASP.NET MVC 4.0 projects in Visual Studio as part of our solution.

1.	 MyContacts: This will be an ASP.NET MVC 4.0 project created using the Web API
template. We can have both MVC controllers and WebAPI controllers in the same project.
This project represents both the resource server and the authorization server. Although
both servers can be owned by the same organization and hence can be part of the same
domain, a logical separation is generally needed. I’m combining them both into a single
project here so I can store the data that has to be shared between them in memory. This
approach will help me keep the code in the listings brief and stay focused on OAuth 2.0
without getting into the extraneous persistence details.

2.	 MyPromo: This will be an ASP.NET MVC 4.0 project created with the Basic template. I use
the Basic template because I don’t plan to have any web API or authentication mechanism
for this application, but you could use any template. MyPromo represents the client web
application that requires the protected resource to function.

Both projects use local IIS (not IIS Express). The project URLs are http://localhost/Contacts for the MyContacts
project and http://localhost/Promo for the MyPromo project. Instead of using local host, I use the names defined in
the hosts file, respectively: http://www.my-contacts.com/contacts and http://www.my-promo.com/promo.

Note■■  T o open the Visual Studio solution corresponding to this chapter from the source code accompanying this book,
you must run Visual Studio as an administrator for the projects to load correctly.

Before we dive into these projects in depth, I want to explain the format of the access token. We’ll implement the
authorization code grant type to issue an access token, which will be a signed JSON Web Token (JWT). For signing and
validation, we’ll use a symmetric key that is exchanged between the resource server and the authorization server out
of band. We’ll use the same JWT implementation we used in Chapter 10.

MyContacts Project
Table 12-2 shows the classes in the MyContacts project, with a brief description of each class. I show all the classes in
the table to give you an overview, but later we will look into the code of the individual classes in a logical grouping.
We will get to know the classes up close and personal, but not necessarily in the same order shown here.

Table 12-2.  Classes in the MyContacts Project

Class Name Namespace Description

HomeController MyContacts.Controllers Contains the action methods for login and listing
the contacts. This MVC controller is all about
contact management.

OAuth20Controller MyContacts.Controllers Accepts the requests for authorization codes as well
as requests for exchanging codes to access tokens.
This MVC controller is the authorization endpoint.

ContactsController MyContacts.Controllers Returns the list of contacts. The only API controller.

(continued)

www.it-ebooks.info

http://localhost/Contacts
http://localhost/Promo
http://www.my-contacts.com/contacts
http://www.my-promo.com/promo
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

254

Class Name Namespace Description

LoginRequired MyContacts.Filters Establishes identity based on the value stored in
a cookie. If no cookie exists, it redirects to a login
page, similar to implementing Forms authentication
in the contacts app.

EncodingHelper
EncryptionHelper

MyContacts.Helpers Provides extension methods for base64 URL
encoding (straight out of Chapter 10) and
symmetric key TripleDES encryption. I chose
TripleDES for no particular reason. You can use any
strong algorithm you like for this purpose, such as
Rijndael.

AuthorizationManager MyContacts.Infrastructure Implements claims-based access control
for a web API. This class is a subclass of
ClaimsAuthorizationManager. The scope granted
by the user directly equates to the claim for this
purpose.

JsonWebToken MyContacts.Infrastructure CLR representation of the JSON web token. Straight
out of Chapter 10.

OAuthTokenHandler MyContacts.Infrastructure Establishes identity based on the claims in the
incoming JWT bearer token. This is a message
handler.

AuthzCodeRequest MyContacts.Models Represents the request for an authorization code.
This is a model class.

TokenRequest MyContacts.Models Represents the request for an access token. This is
a model class.

Contact MyContacts.Models Represents the contact entity. This is a model class.

Table 12-2.  (continued)

MyPromo Project
Table 12-3 shows the classes in the MyPromo project, with a brief description of each class.

Table 12-3.  Classes in the MyPromo Project

Class Name Namespace Description

HomeController MyPromo.Controllers Requests an authorization code, exchanges it for a token, makes
the web API call, and shows the contacts retrieved to the user.

Contact MyPromo.Models Represents a subset of the contact business entity with only the
name and e-mail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

255

HTTP Transactions
I covered the authorization code grant flow in Chapter 11, where I showed how to consume the web API of Live
Connect. In this section I show the details; namely, the HTTP request and the HTTP response for each of the steps
involved.

The flow that we are interested in here is the one that originates from the Promotion Manager web application
(see preceding Figure 12-1 for an illustration of the flow through screenshots). I don’t cover the flow corresponding to
the user logging in directly into Contacts Manager and performing create, read, update, and delete (CRUD) operations
on the contacts. I mentioned that flow briefly earlier in this chapter simply for the sake of completeness.

The following HTTP transactions happen in the Promotion Manager flow.

1.	 John Q. Human goes to the Promotion Manager web application home page. This is the
page with the big Get Contacts button.

Request GET http://www.my-promo.com/promo HTTP/1.1
Host: www.my-promo.com

Response HTTP/1.1 200 OK
Content-Length: 647

<!DOCTYPE html><html>…</html>

2.	 John clicks the Get Contacts button, triggering an HTTP POST. An HTML form containing
the only control of the Get Contacts button in the /Home/Index view gets posted to itself.
The action method in the controller redirects to the authorization endpoint
http://www.my-contacts.com/contacts/OAuth20, making the request for an
authorization code. Because this is an authorization code grant, which is applicable for
the server-side components of the web application, I’m making the request from the MVC
controller itself, although it can be done using JQuery as well from the client side. The
redirect URI specified in the request must be a controller action so that the important step
of exchanging the authorization code to a token runs in the server side.

Request POST http://www.my-promo.com/promo HTTP/1.1
Referer: http://www.my-promo.com/promo
Content-Type: application/x-www-form-urlencoded
Host: www.my-promo.com

go=Get+Contacts

Response HTTP/1.1 302 Found
Location: http://www.my-contacts.com/contacts/OAuth20?response_
type=code&redirect_uri=http://www.my-promo.com/promo/Home/
Exchange&client_id=0123456789&scope=Read.Contacts

<html><!-- HTML response body omitted for brevity --></html>

3.	 The redirect results in the GET to the OAuth20Controller’s Index action method. It
returns a view that corresponds to the sign-in page, where John enters his credentials and
expresses his consent to share the contact information by selecting the checkbox. It is
important to note that John currently is in the my-contacts.com domain and no longer
in my-promo.com.

www.it-ebooks.info

http://www.my-promo.com/promo
http://www.my-promo.com/
http://www.my-contacts.com/contacts/OAuth20
http://www.my-promo.com/promo
http://www.my-promo.com/promo
http://www.my-promo.com/
http://www.my-contacts.com/contacts/OAuth20?
http://http://www.my-promo.com/promo/Home/
http://my-contacts.com
http://my-promo.com
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

256

Request GET http://www.my-contacts.com/contacts/OAuth20?response_
type=code&redirect_uri= http://www.my-promo.com/promo/Home/
Exchange&client_id=0123456789&scope=Read.Contacts HTTP/1.1
Referer: http://www.my-promo.com/promo
Host: www.my-contacts.com

Response HTTP/1.1 200 OK

<!DOCTYPE html>
<html><!-- Response body omitted for brevity. It is basically the sign-in
page --></html>

4.	 As John clicks the login button, the form gets posted with his credentials along with a
ciphertext. I’ll cover the details of the ciphertext later in this chapter when we get to the
implementation details. OAuth20Controller handles this POST and redirects to the
URI specified in the request, along with the authorization code in the query string. I use
a GUID as the authorization code. At this point, John is getting redirected back to the
Promotion Manager application.

Request POST http://www.my-contacts.com/Contacts/OAuth20/Authenticate
HTTP/1.1
Referer: http://www.my-contacts.com/contacts/OAuth20?response_
type=code&redirect_uri=http://www.my-promo.com/promo/Home/
Exchange&client_id=0123456789&scope=Read.Contacts
Content-Type: application/x-www-form-urlencoded
Host: www.my-contacts.com

userId=jqhuman&password=jqhuman&isOkayToShare=true&
CipherText=IpByUN0bx9aX…oQ%3D%3D

Response HTTP/1.1 302 Found
Location: http://www.my-promo.com/promo/Home/
Exchange?code=45a92420-92a2-4825-9a06-35b439ef8b01

<html><head><title>Object moved</title></head><body> …</html>
<!-- Response body omitted for brevity-->

5.	 The redirect results in a GET to the Exchange action method of HomeController of the
Promotion Manager web application. For this request, see the following substeps a, b,
and c. The response to the request is generated only as part of substep c. This entire
step, including the substeps, must run only on the server side (a confidential client), as
specified by OAuth 2.0. As covered in the previous chapter, exchanging the authorization
code for a token requires a client secret, which must remain a secret that only the client
application has access to. The user agent (browser) or the end user must not know the
secret and hence must not be able to exchange the code and obtain a token themselves.

Request GET http://www.my-promo.com/promo/Home/Exchange?code=45a92420-92a2-
4825-9a06-35b439ef8b01 HTTP/1.1
Referer: http://www.my-contacts.com/contacts/OAuth20?response_type=…
Host: www.my-promo.com

www.it-ebooks.info

http://www.my-promo.com/promo/Home/Exchange%26client_id=0123456789%26scope=Read.Contacts
http://www.my-promo.com/promo/Home/Exchange%26client_id=0123456789%26scope=Read.Contacts
http://www.my-promo.com/promo
http://www.my-contacts.com/
http://www.my-contacts.com/Contacts/OAuth20/Authenticate
http://www.my-promo.com/promo/Home/Exchange%26client_id=0123456789%26scope=Read.Contacts
http://www.my-promo.com/promo/Home/Exchange%26client_id=0123456789%26scope=Read.Contacts
http://www.my-contacts.com/
http://www.my-promo.com/promo/Home/
http://www.my-promo.com/promo/Home/
http://www.my-contacts.com/contacts/OAuth20?
http://www.my-promo.com/
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

257

a.	 The Exchange action method exchanges the code it received for an access token by
making a POST request using HttpClient from within the action method.

Request POST http://www.my-contacts.com/contacts/OAuth20 HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: www.my-contacts.com

client_id=0123456789&
redirect_uri=http%3A%2F%2Fwww.my-promo.com%2Fpromo%2FHome%2FExchange&
client_secret=TXVtJ3MgdGhlIHdvcmQhISE%3D&
code=39ebbe3a-e68d-4728-bdff-f239c8504b63&
grant_type=authorization_code

Response HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{“access_token”:”eyJ0eXI1NiJ9.eyJcyJ9.pG6rXQXXledLg9alZQ”}

b.	 The Exchange action method finally invokes the web API by passing the token in an
HTTP request authorization header and gets the list of contacts in the form of JSON.

Request GET http://www.my-contacts.com/contacts/api/contacts HTTP/1.1
Authorization: Bearer eyJ0eXI1NiJ9.eyJcyJ9.pG6rXQXXledLg9alZQ
Host: www.my-contacts.com

Response HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 133

[{“Name”:”Tom”, ”Email”:”tom@nowhere.com”},
{“Name”:”Dick”, ”Email”:”dick@anywhere.com”},
{“Name”:”Harry”, ”Email”:”harry@somewhere.com”}]

c.	 The JSON response is parsed into a list, which is sent to the view as a model. The view
corresponding to the Exchange action method shows the list of contacts retrieved
from the Contacts Manager application.

Response HTTP/1.1 200 OK

<!DOCTYPE html>
<html>…</html><!-- Response body omitted for brevity. List of contacts retrieved -->

Note■■  T he refresh token can also be sent to the client in the HTTP response for Step 5a, if the scope requested is
related to offline access. For this exercise, I’m not including a refresh token to keep the code small enough to be covered
in this chapter.

www.it-ebooks.info

http://www.my-contacts.com/contacts/OAuth20
http://www.my-contacts.com/
http://www.my-contacts.com/contacts/api/contacts%20
http://www.my-contacts.com/
http://tom@nowhere.com
http://dick@anywhere.com
http://harry@somewhere.com
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

258

Building the Contacts Manager Application
The Contacts Manager application is the underlying web application associated with the web API. I’m including the
code for this application in this chapter only for the sake of completeness. The Contacts Manager application is the
part of the resource server with which a user interacts directly. After logging in using the credentials, the user can add,
modify, delete, and view the contacts. For the sake of brevity, the following code supports only a listing of contacts.

1.	 Launch Visual Studio 2012 as an administrator.

2.	 Create a new ASP.NET MVC 4.0 project using the Web API template and name it
MyContacts.

3.	 Configure Visual Studio to use local IIS so that the project URL becomes
http://localhost/Contacts. Select Use Local IIS Web server and clear the Use IIS
Express checkbox. Click Create Virtual Directory to create the virtual directory in IIS
(see Figure 12-2).

Figure 12-2.  Configuring Visual Studio to use IIS

4.	 Visual Studio creates an MVC controller HomeController as part of the project. This will
be the major component of the Contacts Manager application. Listing 12-1 shows the
HomeController class with the Index action method, which corresponds to the home
page of the Contacts Manager application. It calls the static GenerateContacts method in
the Contact class that returns a hard-coded list of contacts and filters the contacts using the
name of the identity. In other words, it displays only the contacts that belong to the
logged-in user (I show the full coverage of the Contact class in the last step of this
sequence). Forms authentication is not used and a simple mechanism based on an action
filter is used. Note the application of the LoginRequired filter on the action method
(shown in bold type).

www.it-ebooks.info

http://localhost/Contacts
http://www.it-ebooks.info/

Chapter 12 ■ Oauth 2.0 frOm the GrOund up

259

Listing 12-1. HomeController Class in the MyContacts Project

public class HomeController : Controller
{
 [LoginRequired]
 public ActionResult Index()
 {
 string owner = Thread.CurrentPrincipal.Identity.Name;

 return View(Contact.GenerateContacts()
 .Where((c => c.Owner == owner));
 }

 // Login methods go here
}

5. The LoginRequired filter shown in Listing 12-2 ensures a user is logged in before starting
to use the application. The OnActionExecuting base method is overridden to check for the
presence of a cookie named “.contacts”. If the cookie is present, an identity is established
with the name that is the same as the value read from the cookie. If the cookie is not
present, it redirects to Login action, which is the login screen.

Listing 12-2. LoginRequired Filter

public class LoginRequired : ActionFilterAttribute
{
 public override void OnActionExecuting(ActionExecutingContext context)
 {
 HttpCookie cookie = context.HttpContext.Request.Cookies[".contacts"];
 if (cookie != null)
 {
 Thread.CurrentPrincipal = new GenericPrincipal(new GenericIdentity(cookie.Value), null);
 }
 else
 {
 context.Result = new RedirectToRouteResult(
 new RouteValueDictionary(
 new { Action = "Login", Controller = "Home" }));
 }
 }
}

6. Add the Login action method to HomeController, as shown in Listing 12-3. Decorate this
action method with the HttpGet attribute so that it handles only HTTP GET.

Listing 12-3. Login Action Method for GET

[HttpGet]
public ActionResult Login()
{
 return View();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

260

7.	 Right-click the Login action method and select Add View… in the resulting pop-up menu
to create a new view. Leave the default selection of “Razor (CSHTML)” as the view engine.
Copy and paste the code from Listing 12-4 into the newly generated view file
(Login.cshtml in the Views\Home folder).

Listing 12-4.  Login View (Login.cshtml) 

@using (Html.BeginForm())
{
<div class="editor-label"> @Html.Label("userId") </div>
<div class="editor-field"> @Html.TextBox("userId")</div>
 
<div class="editor-label">@Html.Label("password")</div>
<div class="editor-field">@Html.Password("password")</div>
 
<input type="submit" value="Login" />
}
 

8.	 Add the Login action method to HomeController, as shown in Listing 12-5. This time,
decorate the action method with the HttpPost attribute so that it handles only HTTP
POST. If you are not familiar with ASP.NET MVC, model binding is what ensures the
values entered by the user get passed into our action method as arguments. We follow the
naming convention and make sure the text boxes in the HTML form are named userId
and password, matching the parameter names of the Login action method for POST.
As shown in the listing, the action method performs the authentication as just a check
of the password matching the user ID for the purpose of illustration. If successful, the
“.contacts” cookie is set and the browser is redirected to /Home/Index, which is the home
page. The LoginRequired filter I covered earlier looks for this cookie to establish identity
before the Index action method runs.

Listing 12-5.  Login Action Method for POST 

[HttpPost]
public ActionResult Login(string userId, string password)
{
 if (!String.IsNullOrWhiteSpace(userId))
 {
 if (userId.Equals(password)) // consider this an authentic user
 {
 Thread.CurrentPrincipal = new GenericPrincipal(new

GenericIdentity(userId), null);
 
 // create cookie with userId
 // Encrypt this - never use clear text cookies
 Response.Cookies.Add(new HttpCookie(".contacts", userId));
 
 return RedirectToAction("Index");
 }
 }
 
 return View();
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

261

Caution■■  N ever write plain text cookies as shown in Listing 12-5 unless you are writing that code to illustrate a concept
in a book you are writing! Production code must always encrypt sensitive data before stuffing the data into a cookie.

9.	 As a result of the redirect in the previous step, the Index action method discussed in Step 4
will be run. Because the LoginRequired filter has been applied to it, the filter runs first and
creates the principal object based on the cookie from the previous step. When the actual
method runs, it filters the contacts based on the principal and uses the same as the model
to render the view. The view for /Home/Index is shown in Listing 12-6. It just enumerates
the model (the list of contacts) and displays each contact in a table row.

Listing 12-6.  View for /Home/Index - Index.cshtml 

@model IEnumerable<MyContacts.Models.Contact>
 
@{
 ViewBag.Title = "My Contacts";
}
 
<h2>My Contacts</h2>
 
<p>
 @Html.ActionLink("Create New", "Create")
</p>
<table>
<tr>
<th>@Html.DisplayNameFor(model => model.Name) </th>
<th>@Html.DisplayNameFor(model => model.Email) </th>
<th>@Html.DisplayNameFor(model => model.Address) </th>
<th>@Html.DisplayNameFor(model => model.DollarsSpentInStore) </th>
<th>@Html.DisplayNameFor(model => model.LoyaltyPoints) </th>
<th></th>
</tr>
 
@foreach (var item in Model) {
<tr>
<td>@Html.DisplayFor(modelItem => item.Name) </td>
<td>@Html.DisplayFor(modelItem => item.Email) </td>
<td>@Html.DisplayFor(modelItem => item.Address) </td>
<td>@Html.DisplayFor(modelItem => item.DollarsSpentInStore) </td>
<td>@Html.DisplayFor(modelItem => item.LoyaltyPoints) </td>
<td>
 @Html.ActionLink("Edit", "Edit", new { /* id=item.PrimaryKey */ }) |
 @Html.ActionLink("Details", "Details", new { /* id=item.PrimaryKey */ }) |
 @Html.ActionLink("Delete", "Delete", new { /* id=item.PrimaryKey */ })
</td>
</tr>
}
</table>
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

262

10.	 The final piece is the Contact class, the entity for which this application provides the user
interface to accomplish CRUD operations. Listing 12-7 shows this class. It has several
properties and a static method GenerateContacts, which we already used in Listing 12-1.
Create this class in the Models folder.

Listing 12-7.  Contact Class 

public class Contact
{
 public string Name { get; set; }
 public string Email { get; set; }
 public string Address { get; set; }
 public decimal DollarsSpentInStore { get; set; }
 public int LoyaltyPoints { get; set; }
 public string Owner { get; set; }
 
 public static IEnumerable<Contact> GenerateContacts()
 {
 yield return new Contact()
 {
 Name = "Tom",
 Email = "tom@nowhere.com",
 Address = "123 Oak Circle, GermanTown, AB 12345",
 DollarsSpentInStore = 1234.56M,
 LoyaltyPoints = 1000,
 Owner = "jqhuman"
 };
 
 yield return new Contact()
 {
 Name = "Dick",
 Email = "dick@anywhere.com",
 Address = "987 Cedar Circle, DutchTown, YZ 98765",
 DollarsSpentInStore = 1784.96M,
 LoyaltyPoints = 1500,
 Owner = "jqhuman"
 };
 
 yield return new Contact()
 {
 Name = "Harry",
 Email = "harry@somewhere.com",
 Address = "567 Birch Circle, FrenchTown, UA 34589",
 DollarsSpentInStore = 14567.43M,
 LoyaltyPoints = 12000,
 Owner = "jqhuman"
 };
 
 yield return new Contact()
 {
 Name = "Tom",
 Email = "tom@missing.com",

www.it-ebooks.info

http://tom@nowhere.com
http://dick@anywhere.com
http://harry@somewhere.com
http://tom@missing.com
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

263

 Address = "493 Hemlock Circle, SpanishTown, MB 53293",
 DollarsSpentInStore = 145.47M,
 LoyaltyPoints = 100,
 Owner = "jqlaw"
 };
 }
}
 

That completes the Contacts Manager web application, a small and trivial application I have covered here mainly
for completeness. The Contacts Manager web application exposes the contact information through a web API for
other applications to consume. One such application is the Promotion Manager application, which I cover in the
next section.

In this section I highlighted some of the fundamental concepts of MVC, such as binding and naming
conventions, for those of you who are yet to use the great ASP.NET MVC framework for building web applications.

Building the Promotion Manager Application
The Promotion Manager web application is the client application. It is an ASP.NET MVC 4.0 Web application.
The Promotion Manager application needs the contact information from the Contacts Manager application. The
contact information is the resource protected by OAuth 2.0. There are two screens in this application: (1) the
home page /Home/Index and (2) the contacts listing page /Home/Exchange, as shown on the left and right sides,
respectively, of Figure 12-3.

Figure 12-3.  Promotion Manager application

The following steps show how to build our client application.

1.	 Launch Visual Studio 2012 as an administrator.

2.	 Create a new ASP.NET MVC 4.0 project using the Basic template and name it MyPromo.

3.	 Configure Visual Studio to use local IIS so that the project URL becomes
http://localhost/Promo. Select Use Local IIS Web server and clear the Use IIS Express
checkbox. Click Create Virtual Directory to create the virtual directory in IIS.

www.it-ebooks.info

http://localhost/Promo
http://localhost/Promo
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

264

4.	 Add a new MVC controller and name it HomeController. This controller is the major
component of the application. It has two action methods: Index and Exchange, which
correspond to the two screens. Because this is an authorization code grant that is applicable
to web applications, it should not surprise you to find all OAuth 2.0–related logic in the
HomeController action methods with views having no knowledge of OAuth 2.0.

5.	 Add a view Index.cshtml in the Views\Home folder. Use the code in Listing 12-8.

Listing 12-8.  Index.cshtml 

@{
 ViewBag.Title = "Welcome to My Promotion Manager!";
}
 
<h2>Welcome to My Promotion Manager!</h2>
 
Click the 'Get Contacts' button to import your contacts.

 
@using (Html.BeginForm())
{
<input type="submit" name="go" value="Get Contacts" style="width: 150px; height: 100px;"/>
}
 

6.	 Add the action method Index to HomeController, as shown in Listing 12-9. The same
action method of Index handles both GET and POST. If the incoming parameter go is
empty, it is a GET. Otherwise, it is a POST. The parameter go corresponds to the button
inside the form and the value of the button gets passed to the action method if the user
submits the HTML form by clicking the Get Contacts button. The first time the user
navigates to the home page of /Home/Index, the view displays the big Get Contacts
button. When the user clicks the button, the OAuth 2.0 authorization code grant type flow
starts. The browser is redirected to the authorization server http://www.my-contacts.
com/contacts/OAuth20, passing the following data in the query string.

a.	 The client ID, which is a hard-coded value of 0123456789. This is the same as the
client ID that we used with Live Connect in Chapter 11, although there will be no
screens here to register Promotion Manager with the authorization server. The values
are simply hard-coded into the respective classes.

b.	 The scope of “Read.Contacts”. This is the only scope supported by the authorization
server in our example scenario.

c.	 A redirect or the callback URI of /Home/Exchange that points to the Exchange action
method of HomeController. It is important to note that the code that runs to handle
the callback must be on the server side. In our case, when the authorization server
redirects to the callback URI, the browser will make a GET to /Home/Exchange and
the code that runs to handle it will be in the MVC controller (HomeController), which
is the server-side code.

d.	 The response type specified as “code”, indicating this is a request for an authorization code.

www.it-ebooks.info

http://www.my-contacts.com/contacts/OAuth20
http://www.my-contacts.com/contacts/OAuth20
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

265

Listing 12-9.  HomeController: Index Action Method 

public class HomeController : Controller
{
 string clientId = "0123456789";
 string clientSecret = "TXVtJ3MgdGhlIHdvcmQhISE=";
 
 public ActionResult Index(string go)
 {
 if (!String.IsNullOrWhiteSpace(go)) // Form Post
 {
 string redirectUri = "http://www.my-promo.com/promo/Home/Exchange";
 string scope = "Read.Contacts";
 
 string url = "http://www.my-contacts.com/contacts/OAuth20";
 url += "?response_type=code&redirect_uri={0}&client_id={1}&scope={2}";
 
 url = String.Format(url, redirectUri, clientId, scope);
 
 return Redirect(url);
 }
 
 return View();
 }
 
 // Exchange action method goes here
}
 

7.	 At this point, the authorization server prompts for the user ID and credentials. After
authentication, it asks for consent to share the contact information. After getting consent,
it generates the authorization code and redirects the browser to the callback URI passing
the authorization code in the query string. This will be covered in the following section,
but I mention this point here for continuity.

8.	 The redirect or the callback URI is specified as /Home/Exchange, which corresponds to
the Exchange action method shown in Listing 12-10.

a.	 The GET request resulting out of the redirect is handled by the Exchange action
method. The MVC binding magic makes sure the authorization code sent by the
authorization server is passed into the Exchange action method as an argument.
You need to ensure the parameter is named code to match the query string field.

b.	 Use HttpClient to exchange the authorization code for an access token through a
POST to the authorization server passing in the client ID, the client secret, a hard-coded
value of “code” for the code field, and “authorization_code” as the grant type. As we
saw in Chapter 11 with Live Connect, the client secret is the secret sauce that ensures
only the client application, not the resource owner or the end user, can obtain the
access token. This is the specialty of the authorization code grant.

c.	 The response message to POST in the previous step is a JSON containing an access
token. From the client application point of view, the token is just an opaque string.
All that needs to be done is to send it to the web API as the credential.

www.it-ebooks.info

http://www.my-promo.com/promo/Home/Exchange
http://www.my-contacts.com/contacts/OAuth20
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

266

d.	 Stuff the access token into the Authorization request header using the bearer scheme
and make a GET request to ASP.NET Web API to retrieve the list of contacts.

e.	 The response message of the GET is again a JSON, which is deserialized back into an
IEnumerable<Contact> using Newtonsoft.Json.JsonConvert and passed to the view
as the model for rendering.

Listing 12-10.  Exchange Action Method 

public ActionResult Exchange(string code)
{
 using (HttpClient client = new HttpClient())
 {
 var postData = new List<KeyValuePair<string, string>>();
 postData.Add(new KeyValuePair<string, string>("client_id", clientId));
 postData.Add(new KeyValuePair<string, string>("redirect_uri",
 "http://www.my-promo.com/promo/Home/Exchange"));
 postData.Add(new KeyValuePair<string, string>("client_secret", clientSecret));
 postData.Add(new KeyValuePair<string, string>("code", code));
 postData.Add(new KeyValuePair<string, string>("grant_type", "authorization_code"));
  
 HttpContent content = new FormUrlEncodedContent(postData);
 
 var tokenResponse = client.PostAsync("http://www.my-contacts.com/contacts/OAuth20", content)
 .Result;
 
 if (tokenResponse.IsSuccessStatusCode)
 {
 var token = tokenResponse.Content.ReadAsStringAsync().Result;
 
 string accessToken = (string)(JObject.Parse(token).SelectToken("access_token"));
 
 client.DefaultRequestHeaders.Authorization =
 new AuthenticationHeaderValue("Bearer", accessToken);
 
 var apiResponse = client.GetAsync("http://www.my-contacts.com/contacts/api/contacts")
 .Result;
 
 if (apiResponse.IsSuccessStatusCode)
 {
 string result = apiResponse.Content.ReadAsStringAsync().Result;
 
 var contacts = JsonConvert.DeserializeObject<IEnumerable<Contact>>(result);
 
 return View(contacts);
 }
 }
 }
 
 return Content("Failed to Exchange the authz code. Hope you find this message informative!");
} 

www.it-ebooks.info

http://www.my-promo.com/promo/Home/Exchange
http://www.my-contacts.com/contacts/OAuth20
http://www.my-contacts.com/contacts/api/contacts
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

267

9.	 The view that renders the model, which is IEnumerable<Contact>, is shown in Listing 12-11.

Listing 12-11.  Exchange Action Method’s View: Exchange.cshtml 

@model IEnumerable<MyPromo.Models.Contact>
<h2>Contacts Retrieved From my-contacts.com</h2>
 
<table>
<tr>
<th></th>
<th>@Html.DisplayNameFor(model => model.Name)</th>
<th>@Html.DisplayNameFor(model => model.Email)</th>
</tr>
 
@foreach (var item in Model) {
<tr>
<td>@Html.CheckBox(item.Email)</td>
<td>@Html.DisplayFor(modelItem => item.Name)</td>
<td>@Html.DisplayFor(modelItem => item.Email)</td>
</tr>
}
</table>

<input type="button" value="Spam them" />
 

10.	 Here is the Contact class corresponding to the JSON response sent by the web API. It just
contains two properties: Name and Email, as shown in Listing 12-12. Add this class to the
Models folder.

Listing 12-12.  Contact Class in Promotion Manager 

public class Contact
{
 public string Name { get; set; }
 public string Email { get; set; }
} 

Note■■  T he client application we just built is very similar to the application we built using the authorization code grant
and Live Connect in Chapter 11. That is, after all, one of the benefits of sticking to a standard. Your client code will
hardly change if you change the server implementation. A standard like OAuth 2.0 makes this possible.

Building the Authorization Server
In the scenario we have been working on so far, www.my-contacts.com/contacts/OAuth20 is the authorization
endpoint. This corresponds to the OAuth20Controller class that will be part of the MyContacts project. One of
the design decisions I made was to keep the Contacts Manager web application, the authorization server, and
the resource server (ASP.NET Web API) all part of the same project. So, our authorization server or the endpoint
OAuth20Controller and other classes that are covered in this section will need to be added to the same MyContacts
project that we created earlier, when we built the Contacts Manager application.

www.it-ebooks.info

www.my-promo
http://www.my-contacts.com/contacts/OAuth20
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

268

If you can imagine the authorization server as a black box, as shown in Figure 12-4, there are three requests
coming in.

Authorization Code Request
HTTP GET

Sign-in screen

HTTP Post of the sign-in form

Redirect to /Home/Exchange?
code=<authzCode>

HomeController of
Promotions Manager
Application

OAuth20Controller
(Authorization
Endpoint)

HTTP Post Token Request

Access token

Figure 12-4.  Authorization server as a black box

1.	 The authorization code request, which is an HTTP GET resulting from the redirect
made from the Promotion Manager home page. There are four fields in the request
here: response_type (of value “code”), redirect_uri, client_id, and scope. This request
will be handled by the Index action method (decorated with the HttpGet attribute) in
OAuth20Controller.

2.	 An HTTP POST of the sign-in form with credentials as well as the user consent to share
the protected resource. In Live Connect, user consent happens on another screen as
the next step, but here it is combined into one for brevity. This request will be handled
by the Authenticate action method (decorated with the HttpPost attribute) in
OAuth20Controller.

3.	 A token request, which is an HTTP POST of the authorization code. There are five
fields in the request here: redirect_uri, client_id, client_secret, code, and grant_type
(of value “authorization_code”). This request will be handled by the Index action method
(decorated with theHttpPost attribute) in OAuth20Controller.

We start with the OAuth20Controller class without the action methods, and then add three action methods
corresponding to the preceding three requests as we proceed with implementing the functionality. Listing 12-13
shows the controller without the action methods. There are two class level fields: applicationRegistry and
codesIssued.

1.	 The applicationRegistry dictionary has the key as the client ID and the value is a
Tuple that contains the client secret and the domain. This basically represents the data
associated with the application registration screens in Live Connect. Currently, we are
storing the values corresponding to that of our one and only one client—in other words,
what is hard-coded in the HomeController of the Promotion Manager application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Oauth 2.0 frOm the GrOund up

269

2. The codesIssued dictionary is a concurrent dictionary with a key as the authorization
code, which is System.Guid. When the authorization server issues an authorization
code, it is inserted here so that when a subsequent token request comes in asking for an
authorization code to be exchanged for a token, the controller can validate the code to
see if it had issued one in the past. The value is a Tuple that stores the user identifier, the
redirect URI, and the scope against which an authorization code is issued. These values
are stored to be used in validating the subsequent token request.

The dictionary objects used in the OAuth20Controller class are just placeholders for persistent storage
mechanisms such as a database. This code will not work when deployed in a load-balanced environment or even on
the same machine using a web garden. A persistent store must replace these dictionary objects in such a scenario.

Add a new MVC controller namedOAuth20Controller to the MyContacts project. See Listing 12-13 for the
controller class without action methods. We add the action methods into this class as we progress through the
next sections.

Listing 12-13. OAuth20Controller Without Action Methods

public class OAuth20Controller : Controller
{
 private Dictionary<string, Tuple<string, string>> applicationRegistry = new Dictionary<string,

Tuple<string, string>>();
 private static ConcurrentDictionary<Guid, Tuple<string, string, string>> codesIssued =

new ConcurrentDictionary<Guid, Tuple<string,
string, string>>();

 public OAuth20Controller()
 {
 // client id, client secret and domain
 applicationRegistry.Add("0123456789", new Tuple<string, string>("TXVtJ3MgdGhlIHdvcmQhISE=",

"http://www.my-promo.com"));
 }

 // Action methods go here

}

Index Action Method for HTTP GET
Now let’s add the Index action method that handles the redirect from the Promotion Manager home page. An
HTTP GET resulting out of this redirect is handled by the Index action method described in this section. The view
corresponding to this action method shows the sign-in screen for the user to enter credentials and give consent to
share the contacts information, as shown in Figure 12-5.

www.it-ebooks.info

http://www.my-promo.com/
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

270

1.	 When the Promotion Manager home page redirects the browser to the authorization
endpoint, it passes several values in the query string. These values will be bound to the
properties of the parameter of the action method, which is an AuthzCodeRequest object
by the MVC framework. The AuthzCodeRequest class represents the data coming in the
query string. The properties of this class match the field names in the query string, as
specified by OAuth 2.0. To make matters simple, I have named the properties exactly the
same as fields defined in OAuth 2.0, with the underscore and all, which is generally against
the C# naming convention. It is possible to get around this using a custom binder, but that
will be too much of a detour. So, I’ll stick with property names containing underscores.
Listing 12-14 shows the AuthzCodeRequest class. Because all the fields in the query string
are mandatory, we can simply annotate the corresponding properties with the Required
attribute. If any of these fields are missing in the request, the model state will be invalid.
It is convenient to just check for ModelState.IsValid instead of checking the fields
individually for presence. Create the class AuthzCodeRequest in the Models folder of the
MyContacts project.

Listing 12-14.  AuthzCodeRequest Class 

public class AuthzCodeRequest
{
 [Required]
 public string response_type { get; set; }
 
 [Required]
 public string redirect_uri { get; set; }
 
 [Required]
 public string client_id { get; set; }
 
 [Required]
 public string scope { get; set; }
}
 

Figure 12-5.  Authorization server sign-in (OAuth20/Index View)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

271

2.	 Add the Index action method to OAuth20Controller, as shown in Listing 12-15.
The following steps constitute the Index action method execution.

a.	 Ensure all the properties in the input AuthzCodeRequest parameter are populated by
looking at ModelState.IsValid.

b.	 Check if the client ID is present in the registry. If so, retrieve the domain registered
and ensure the redirect URI is part of this domain.

c.	 The only scope that is supported is Read.Contacts. Ensure the incoming scope is the
same. Reject any other scope.

d.	 Finally, ensure that the response type is “code”. If all these conditions are satisfied,
move ahead. If not, direct to a generic error page.

e.	 When all is well at this point, we are ready to show the sign-in page (see Figure 12-5)
where the user enters credentials and the consent to share the contact information.
One challenge ahead is when the user clicks the Login button, we get the credentials
entered and the boolean value indicating the user’s consent to share. To issue an
authorization code at that time, we will need two values that we currently have in our
input AuthzCodeRequest object: the scope and the redirect URI. We just validated
the URI and scope, and we want the same values available to use while we issue the
authorization code. But the values will not come in again from the user. We need to
store it on the server side and pick it up using some kind of correlation ID that comes
in later. As another option, we could just create a blob of stuff containing these two
values, decipherable to no one but us, and put that in the sign-in form as a hidden
field that we pick up when the sign-in form gets posted. I chose the second approach
to avoid writing any persistence logic for the sake of simplicity. So, we create a string
with a redirect URI and scope delimited with a pipe, encrypt this string, convert the
resulting bytes into base64 encoding, and stuff that in a ViewBag property, which is
rendered into a hidden field in the sign-in form.

Listing 12-15.  Index Action Method 

[HttpGet]
public ActionResult Index(AuthzCodeRequest request)
{
 bool isRequestValid = false;
 if (ModelState.IsValid)
 {
 if (applicationRegistry.ContainsKey(request.client_id))
 {
 var registryInfo = applicationRegistry[request.client_id];
 if (request.redirect_uri.StartsWith(registryInfo.Item2))
 {
 if (request.scope.Equals("Read.Contacts"))
 {
 if (request.response_type.Equals("code"))
 isRequestValid = true;
 }
 }
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

272

 if (!isRequestValid)
 return RedirectToAction("Error");
 
 ViewBag.CipherText = String.Format("{0}|{1}", request.redirect_uri, request.scope)
 .ToCipherText();
 
 return View(); // shows login screen that posts to Authenticate
}
 

3.	 To implement the ToCipherText extension method used in Listing 12-15, create a folder
called Helpers and create the static class EncryptionHelper inside this folder. See
Listing 12-16. For more information on encryption, see Chapter 6.

Listing 12-16.  ToCipherText Extension Method 

public static class EncryptionHelper
{
 private static byte[] initVector = new byte[] { 13, 62, 115, 120, 34, 163, 226, 86 };
 private static byte[] key = new byte[] { 186, 20, 218, 62, 141, 209, 50, 89, 181, 54, 61,

 108, 144, 128, 224, 86, 207, 106, 6, 68, 182,
166, 44, 236 };

 
 public static string ToCipherText(this string clearText)
 {
 TripleDESCryptoServiceProvider provider = new TripleDESCryptoServiceProvider();
 
 byte[] clearBytes = Encoding.UTF8.GetBytes(clearText);
 byte[] foggyBytes = Transform(clearBytes, provider.CreateEncryptor(key, initVector));
 
 return Convert.ToBase64String(foggyBytes);
 }
 
 private static byte[] Transform(byte[] textBytes, ICryptoTransform transform)
 {
 using (MemoryStream buf = new MemoryStream())
 {
 using (CryptoStream stream = new CryptoStream(buf, transform, CryptoStreamMode.Write))
 {
 stream.Write(textBytes, 0, textBytes.Length);
 stream.FlushFinalBlock();
 return buf.ToArray();
 }
 }
 }
}
 

4.	 Now create the view for the preceding Index action method and copy and paste the code
from Listing 12-17.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

273

Listing 12-17.  Index.cshtml 

<h1>Sign In</h1>
@using (Html.BeginForm("Authenticate", "OAuth20"))
{
<div class="editor-label">@Html.Label("userId")</div>
<div class="editor-field">@Html.TextBox("userId")</div>
<div class="editor-label">@Html.Label("password")</div>
<div class="editor-field">@Html.Password("password")</div>
 
@Html.CheckBox("isOkayToShare")<text> Check to consent to share the contacts</text>
 
@Html.Hidden("CipherText", (string)ViewBag.CipherText)
 
<input type="submit" value="Login" />
} 

Authenticate Action Method
An HTML form rendered by the Index view in Listing 12-17 specifies the Authenticate action method of
OAuth20Controller as the target. There is a check box that the user can select to give consent to share contact
information. There also is a hidden field rendered using the value we just passed in the ViewBag. Both these and the
textboxes named userId and password get sent to the Authenticate action method, shown in Listing 12-18.
Following are the steps that constitute the Authenticate action method execution.

1.	 The Authenticate action method has four parameters with names matching exactly
the form fields we saw in Listing 12-17. Thus, after getting the userId and password,
authenticate the same. Here, I just check that userId and password are the same for a user
to be considered authentic. Of course, this is done purely from an illustration point of view.

2.	 If the user has agreed to share by selecting the checkbox, the boolean parameter
isOkayToShare will be true. If that is the case and the credentials are authentic, perform
the following steps.

a.	 Decrypt the content of the hidden field that has come to the action method in the
CipherText parameter using the ToClearText extension method and recover the URI
and scope.

b.	 Along with these two and the user ID, create a Tuple.

c.	 Generate a GUID as the authorization code and using that as the key, store the Tuple
in the concurrent dictionary.

d.	 Finally, redirect to the redirect URI specified in the initial request passing the code as
a query string.

Listing 12-18.  Authenticate Action Method 

[HttpPost]
public ActionResult Authenticate(string userId, string password,
bool isOkayToShare, string CipherText)
{
 // Authenticate
 bool isAuthentic = !String.IsNullOrWhiteSpace(userId) && userId.Equals(password);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

274

 if (!isAuthentic)
 return RedirectToAction("Error");
 
 if (isOkayToShare)
 {
 var tokens = CipherText.ToClearText().Split('|');
 string uri = tokens[0];
 string scope = tokens[1];
 
 Guid code = Guid.NewGuid();
 codesIssued.TryAdd(code, new Tuple<string, string, string>(userId, uri, scope));
 
 uri += "?code=" + code.ToString();
 
 return Redirect(uri);
 }
 
 return RedirectToAction("Index", "Home");
}
 

Add a new static method ToClearText to the static class EncryptionHelper we saw earlier, as shown in
Listing 12-19. For more information on decryption, see Chapter 6.

Listing 12-19.  ToClearText Extension Method 

public static string ToClearText(this string cipherText)
{
 TripleDESCryptoServiceProvider provider = new TripleDESCryptoServiceProvider();
 byte[] foggyBytes = Convert.FromBase64String(cipherText);
 
 return Encoding.UTF8.GetString(Transform(foggyBytes, provider.CreateDecryptor(key, initVector)));
}
 

As a result of the redirect, the browser will go to the Promotion Manager application and the Exchange action method
we saw in the previous section extracts this code and makes a POST request to exchange the code for an access token.
The Index action method with the HttpPost attribute will handle that POST. I cover this process in the next section.

Index Action Method for HTTP POST
The Index action method of OAuth20Controller handles the HTTP POST from the Promotion Manager application
to exchange the authorization code for an access token. The following steps complete the implementation of this
action method.

1.	 The fields in the request entity-body of the HTTP POST can be represented by a class,
similar to the Index action method that we created for GET. Create a TokenRequest class
in the Models folder of the MyContacts project, as shown in Listing 12-20. Because all
the fields in the request are mandatory, we can simply annotate the properties with the
Required attribute. If any of these fields is missing in the request, the model state will be
invalid. It is convenient to just check for ModelState.IsValid instead of checking the
fields individually for presence.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

275

Listing 12-20.  TokenRequest Class 

public class TokenRequest
{
 [Required]
 public string redirect_uri { get; set; }
 
 [Required]
 public string client_id { get; set; }
 
 [Required]
 public string code { get; set; }
 
 [Required]
 public string client_secret { get; set; }
 
 [Required]
 public string grant_type { get; set; }
}
 

2.	 Create the Index action method with the HttpPost attribute in OAuth20Controller, as
shown in Listing 12-21. To summarize the action, it just performs a bunch of validations.
If all are successful, it creates a JSON Web Token and sends that back as the JsonResult in
the access_token field. Following are the validations performed before an access token
is issued.

a.	 All the required fields are present. This validation is accomplished by just checking
ModelState.IsValid.

b.	 The client ID is in the registry and the client secret passed in matches the client secret
stored in the registry against the client ID.

c.	 The grant type is “authorization_code”.

d.	 The authorization code in the request is present in the concurrent dictionary; in
other words, the code is something we issued at some point in the past. The current
implementation does not enforce any limit as to how old the authorization code can be.

e.	 The redirect URI in the request matches the URI specified in the initial request.

If all conditions are satisfied, the authorization code is removed from the dictionary and a JSON Web Token is
issued as the access token.

Listing 12-21.  Index Action Method (POST) 

[HttpPost]
public JsonResult Index(TokenRequest request)
{
 bool isRequestValid = false;
 Tuple<string, string, string> grantData = null;
 
 // All required inputs are present
 if (ModelState.IsValid)
 {
 // client id is in the registry

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

276

 if (applicationRegistry.ContainsKey(request.client_id))
 {
 var registryInfo = applicationRegistry[request.client_id];
 // client secret is the registy against the client id
 if (request.client_secret.Equals(registryInfo.Item1))
 {
 // grant type is correct
 if (request.grant_type.Equals("authorization_code"))
 {
 Guid code = Guid.Parse(request.code);
 // we have issued the code, since it is present in our list of codes issued
 if (codesIssued.TryGetValue(code, out grantData))
 {
 // Token request is for the same redirect URI for which we
 // previously issued the code
 if (grantData != null && request.redirect_uri.Equals(grantData.Item2))
 {
 // all is well - remove the authz code from our list
 isRequestValid = true;
 codesIssued.TryRemove(code, out grantData);
 }
 }
 }
 }
 }
 }
 
 if (isRequestValid)
 {
 JsonWebToken token = new JsonWebToken()
 {
 SymmetricKey = EncryptionHelper.Key,
 Issuer = "http://www.my-contacts.com/contacts/OAuth20",
 Audience = "http://www.my-promo.com/promo/Home"
 };
 
 token.AddClaim(ClaimTypes.Name, grantData.Item1);
 token.AddClaim("http://www.my-contacts.com/contacts/OAuth20/claims/scope", grantData.Item3);
 
 return Json(new { access_token = token.ToString() });
 }
 
 // OAuth 2.0 spec requires the right code to be returned
 // For example, if authorization code is invalid, invalid_grant must be returned
 // I'm just returning 'invalid_request' as a catch-all thing, just for brevity
 return Json(new { error = "invalid_request" });
}
 

3.	 JWT is a signed token and it contains two claims: a standard name claim representing
the user identifier used to sign in and a custom claim representing the scope. I take the
JsonWebToken class, along with the helper class it depends on, EncodingHelper, straight
from Chapter 10 and put them in the Infrastructure and Helpers folder, respectively.
Create the Infrastructure folder before copying the files.

www.it-ebooks.info

http://www.my-contacts.com/contacts/OAuth20
http://www.my-promo.com/promo/Home
http://www.my-contacts.com/contacts/OAuth20/claims/scope
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

277

4.	 For any error, I return a blanket error. OAuth 2.0 clearly specifies the error code that must be
returned for different situations. You can easily implement the logic to return the appropriate
error after reading the specification. OAuth20Controller has the Error action method, which
returns a static view with some wording that something has gone wrong while processing the
request. Other action methods redirect to this when a validation fails. I’m not showing the code
in a separate listing because it has just a return View(); as the method body.

Note■■   I use the EncryptionHelper class to expose the key it uses for encryption, through a static read-only property,
which I use for the JWT signing (see Listing 12-21). This class is part of the same project as OAuth20Controller that
creates the JWT and OAuthTokenHandler that validates the JWT signature. Hence, I use the key in both places simply
through a direct call to EncryptionHelper.Key. There is no out-of-band key sharing.

Building the Resource Server
Finally, we are back to writing code related to ASP.NET Web API. ContactsController is an ApiController that
has just one method to return the contacts. The ultimate objective of a client application is to invoke this method.
However, the method is protected by a door in the form of a message handler and the access token is the key that can
unlock this door. Following are the steps to build the resource server.

1.	 Start with the message handler shown in Listing 12-22. The handler looks at the
authorization request header and if the scheme is “Bearer”, it pulls out the value in the
header and deserializes the value into a JsonWebToken. The signature validation and
expiry is checked by Parse(), as we saw in Chapter 10. Ultimately, the claims in the token
are used to create a ClaimsIdentity object and subsequently a ClaimsPrincipal object
that is set in Thread.CurrentPrincipal.

Listing 12-22.  OAuthTokenHandler 

public class OAuthTokenHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,

 CancellationToken cancellationToken)
 {
 try
 {
 var headers = request.Headers;
 if (headers.Authorization != null)
 {
 if (headers.Authorization.Scheme.Equals("Bearer"))
 {
 string accessToken = request.Headers.Authorization.Parameter;
 JsonWebToken token = JsonWebToken.Parse(accessToken, EncryptionHelper.Key);
 
 var identity = new ClaimsIdentity(token.Claims, "Bearer");
 var principal = new ClaimsPrincipal(identity);

 Thread.CurrentPrincipal = principal;

 if (HttpContext.Current != null)
 HttpContext.Current.User = principal;
 }
 } 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

278

 var response = await base.SendAsync(request, cancellationToken);
 
 if (response.StatusCode == HttpStatusCode.Unauthorized)
 {
 response.Headers.WwwAuthenticate.Add(
 new AuthenticationHeaderValue("Bearer",
 "error=\"invalid_token\""));
 }
 
 return response;
 }
 catch (Exception)
 {
 
 var response = request.CreateResponse(HttpStatusCode.Unauthorized);
 
 response.Headers.WwwAuthenticate.Add(
 new AuthenticationHeaderValue("Bearer", "error=\"invalid_token\""));
 
 return response;
 }
 }
}
 

2.	 The message handler is plugged into the pipeline by adding the config.
MessageHandlers.Add(new OAuthTokenHandler()); line in the WebApiConfig.cs file in
the App_Start folder.

3.	 Create a new ApiController named ContactsController, as shown in Listing 12-23.
It uses the GenerateContacts() method of the Contact class, filters the list using the
name of the identity, and creates a list of MailingContact objects. The message handler
establishes the identity, but if the authorization header is not passed in it does not reject
the request by sending back an unauthorized response. By decorating the Get() method in
Listing 12-23 with a ClaimsPrincipalPermission attribute, I make sure the API works only
if the identity is established and the necessary claims are there to invoke the method.

Listing 12-23.  ContactsController: Web API 

public class ContactsController : ApiController
{
 [ClaimsPrincipalPermission(SecurityAction.Demand, Operation = "Get", Resource = "Contacts")]
 public IEnumerable<MailingContact> Get()
 {
 return Contact.GenerateContacts()
 .Where(c => c.Owner == User.Identity.Name)
 .Select(c => new MailingContact()
 {
 Name = c.Name,
 Email = c.Email
 }).ToList();
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Oauth 2.0 frOm the GrOund up

279

4. Create a class MailingContact with the Name and Email properties, as shown in Listing 12-24.
I have this class inside ContactsController.cs, but you can create it in the Models folder
if you like to organize your classes that way.

Listing 12-24. MailingContact Class

public class MailingContact
{
 public string Name { get; set; }
 public string Email { get; set; }
}

5. The claims needed to invoke the web API are not hard-coded in the ApiController, but
I use a ClaimsAuthorizationManager subclass, shown in Listing 12-25. This is not a new
concept for us because we looked at this class in Chapter 5.The authorization manager
looks for a claim of type http://www.my-contacts.com/contacts/OAuth20/claims/scope
and a value of “Read.Contacts”, which is our one and only scope to decide if the API can
be allowed to be invoked or not. It is currently trivial, but any changes to be made to the
authorization logic in the future will be isolated to only this class and will not affect the API.

Listing 12-25. ClaimsAuthorizationManager Subclass

public class AuthorizationManager : ClaimsAuthorizationManager
{
 public override bool CheckAccess(AuthorizationContext context)
 {
 string resource = context.Resource.First().Value;
 string action = context.Action.First().Value;

 if (action == "Get" && resource == "Contacts")
 {
 ClaimsIdentity id = (context.Principal.Identity as ClaimsIdentity);

 if (!id.IsAuthenticated)
 return false;

 return (i d.Claims.Any(c =>
c.Type == "http: //www.my-contacts.com/contacts/OAuth20/claims/scope"

&& c.Value.Equals("Read.Contacts")));
 }

 return false;
 }
}

6. To plug the ClaimsAuthorizationManager subclass into the claims pipeline, modify
Web.config, as shown in Listing 12-26.

Listing 12-26. Web.config Changes

<configuration>
 <configSections>
 <section name="system.identityModel"

www.it-ebooks.info

http://www.my-contacts.com/contacts/OAuth20/claims/scope
http://www.my-contacts.com/contacts/OAuth20/claims/scope
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

280

 type="System.IdentityModel.Configuration.SystemIdentityModelSection,
 System.IdentityModel, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=B77A5C561934E089"/>
 </configSections>
 . . .
	 <system.identityModel>
 <identityConfiguration>
 <claimsAuthorizationManager
 �type="MyContacts.Infrastructure.AuthorizationManager,

MyContacts"/>
 </identityConfiguration>
	 </system.identityModel>
</configuration>
 

After all this hard work, you are ready to enjoy the fruits of your labor. Start from the Promotion Manager
application. Browse to http://www.my-promo.com/promo. I assume you have edited the hosts file in your computer for
this to work.

Click on the big Get Contacts button and enter the credentials of jqhuman and jqhuman as the user ID and
password. Do remember to select the check box and click Login. Promotion Manager will display the contacts: Tom,
Dick, and Harry. You have just implemented the authorization code grant flow of OAuth 2.0!

Although it is not production strength and does not cover refresh tokens, which is the reason most of us labor
with the authorization code grant, it is still a working model from which you can build your production-strength code.

Security Considerations
The authorization code grant that we just implemented from scratch is done primarily so you can understand the nuts
and bolts. We have not given too much thought to the security aspects other than making sure the authorization code
to the access token exchange is done in the server-side code so that only the client application will be able to obtain
the access token using the client secret. This is not a security consideration but a requirement from the OAuth 2.0
specification for the authorization code grant.

In this section, I briefly cover the security aspects you need to consider while implementing OAuth 2.0. I point
out the areas that need focus here so you can follow along as you design and implement. Covering every single aspect
of security and providing code that you can readily reuse is not possible in a book of reasonable size, at least not one
that can be held with two hands!

In addition to the following considerations, you can also review section 10 of the OAuth 2.0 specification
(RFC 6749), which is dedicated to security considerations.

1.	 In the preceding scenario, we did not use transport security. In a production environment,
HTTPS will be mandatory to ensure confidentiality of user credentials as well as the
authorization code and tokens. OAuth 2.0 heavily banks on HTTPS.

2.	 The client secret, as the name indicates, must remain a secret. It must never be disclosed
to anyone, including legitimate end users. Even the development team need not have
access to the client secret used in production environments. Apart from one or two
administrators, only the client application should have access to the client secret.

3.	 OAuth 2.0 does not specify the format for access tokens, but it goes without saying that the
tokens must be protected for integrity as well as confidentiality in most of the production
scenarios. Transport security in the form of HTTPS will be a great help, but message
security accomplished using signing and encryption can also be considered for
end-to-end protection.

www.it-ebooks.info

http://www.my-promo.com/promo
http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

281

4.	 RFC 6750 specifies the use of access tokens as bearer tokens. Bearer tokens do not have
cryptographic support to prove token ownership, unlike the holder-of-key tokens. Hence,
HTTPS is a must to secure the channel through which the client application presents the
bearer token to the resource server.

5.	 A refresh token is a convenient mechanism to get a new access token without troubling
the user to authenticate and consent to share. But from a security point of view, it is a
headache to manage because the refresh tokens are long-lived. Refresh tokens must
be protected both in motion as well as at rest. If a malicious user gets to your data store
where you have stored the refresh tokens, it will be a disaster. One technique that is worth
considering with refresh tokens is the technique that is mentioned in section 10 of RFC
6749, which is to employ a use-and-throw refresh token that expires with the first request
to refresh the access token. The response message to such an access token refresh request
can contain the new access token as well as a new refresh token.

6.	 The authorization code is sent in the query string that can get logged and stored in the
browser history as well. Authorization codes must be use-and-throw as well as short-lived.
In the implementation that we saw in this chapter, an authorization code that is issued
never expires, which is something for you to take note of.

7.	 The security threats typical to a web application, such as XSS, XSRF, click jacking, and so
on, are all applicable here as well. You must ensure you handle them effectively. ASP.NET
MVC provides you with antiforgery tokens to use against XSRF. See Chapter 15 for more
information related to XSS and XSRF.

8.	 A redirect or callback URI is passed in the request for authorization code, and the
authorization code is sent in the query string while the authorization server redirects to
the URI. To prevent a malicious user from manipulating this URI, you must always check
that the callback URI in the request is part of the domain registered at the time of the client
application registration.

9.	 In the case of an authorization code grant type, by ensuring that only the client application
has access to the client secret you can make sure a request to your web API comes only
from the client application in a non repudiation sense. With an implicit grant, the token
is sent to the browser, and hence the users have access to the token. You will not know if
the client application is making the API call, if a legitimate user is directly making the call,
or if Mallory the malicious user is making the call! For an implicit grant, HTTPS is a must
because the token is sent in the URI fragment.

10.	 It is worth noting that section 10 of RFC 6749 recommends minimizing the resource owner
password credentials grant type given the fact that it is riskier than other types because it
maintains the password antipattern that OAuth 2.0 strives to avoid.

11.	 The client credentials grant type is two-legged because there is no user involvement. Take
the case of an authorization code grant, which is three-legged: The user must supply the
credentials and the client application must supply the client secret for the token to be
issued, more along the lines of the two-man rule. Hence, from a security standpoint, the
client credentials grant type is not comparatively robust. Of course, there are use cases
for this type, but it is better to minimize the use of this grant type. If the client credential is
a symmetric key, be sure to rotate it regularly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ OAuth 2.0 from the Ground Up

282

OPENID CONNECT
 

Can an OAuth-based access token be used to authenticate a user? The answer is yes. For example, the
Promotion Manager application can establish the identity of the user based on the access token it receives
from the Contacts Manager application. What if the token is an encrypted token readable only by an
authorization server? Promotion Manager can simply make the API call passing the token, and if the API call
goes through successfully it can infer that the user is an authenticated user. This type of indirect authentication
is generally referred to as pseudo-authentication. However, this is not the right approach.

The right approach is to use OpenID Connect, which is built on top of OAuth 2.0. OpenID Connect allows clients
to verify the identity of the user (the resource owner) based on the authentication performed by the authorization
server. To make an OpenID Connect request, the client constructs a regular OAuth 2.0 request to obtain an access
token, as in the case of an authorization code grant. A special mandatory scope of openid is included as one of
the requested scopes.

After the user authorizes the request, the client receives the authorization code. The authorization code is
exchanged for an access token and an additional token called ID token (id_token), which is a JWT containing
a few mandatory claims, including the user ID (user_id). The OAuth 2.0 specification does not specify the
attributes of the access token because it is just an opaque string as far as the client is concerned. However,
OpenID Connect specifies the ID token to be JWT. It does make sense because the ID token is meant for client
consumption, and the need for standardization is far greater here with the client being very distinct from the
resource and authorization servers in the majority, if not all, of the cases.

To obtain additional attributes of the user or any other additional tokens, the client makes a GET or POST request
to a special endpoint called UserInfo passing in the access token in the HTTP authorization request header using
the bearer scheme.

What we have just seen is an OpenID Connect Basic Client Profile. At the time of the writing of this book, OpenID
Connect is in an Implementor’s Draft Review Period, and hence there will be no detailed treatment of the topic in
this book apart from this sidebar.

Summary
In this chapter, I walked you through the scenario of John Q. Human using two web applications: The Contacts
Manager application for managing his contact information and the Promotion Manager application for managing the
promotions he runs for his retail store. The Promotion Manager application needs the contact information from the
Contacts Manager application to send the promotions. However, John does not want to share his Contacts Manager
password with the Promotion Manager application.

We implemented Contacts Manager and Promotion Manager as ASP.NET MVC applications, with the protected
resource of the contact information shared to Promotion Manager through a web API that expects an access token
obtained through an OAuth 2.0 authorization code grant. The client application, which in this case is Promotion
Manager, obtains the access token from the Contacts Manager authorization server and presents the same to ASP.NET
Web API in the bearer scheme to receive the contact information in the form of JSON. For the access token, I used a
JWT and reused the JSON web token implementation from Chapter 10 for this purpose.

In the next chapter, we look at using DotNetOpenAuth to work with OAuth 2.0.

www.it-ebooks.info

http://www.it-ebooks.info/

283

Chapter 13

OAuth 2.0 Using DotNetOpenAuth

In this chapter, we implement OAuth 2.0–based authorization in ASP.NET Web API using DotNetOpenAuth (DNOA).
DotNetOpenAuth (http://www.dotnetopenauth.net/) is a well-established open source .NET Framework library
that can help you implement production-grade OAuth 2.0–based authorization for your web API.

DNOA provides a nice API for you to work with as you implement OAuth 2.0. There are classes available
to represent the OAuth 2.0 roles of resource server, authorization server, and client: ResourceServer,
AuthorizationServer, and WebServerClient, respectively. These classes provide you with methods that abstract
away the complexity and the procedural steps that are needed to request, create, obtain, and validate the access token.

For example, to start the OAuth 2.0 flow from the client side you simply need to call the
RequestUserAuthorization method of WebServerClient passing the scope and the callback URI. In the action
method corresponding to the callback URI, after calling the ProcessUserAuthorization method to get the
authorization you can just extract the access token through the AccessToken property. In fact, you do not even need
to know that there are HTTP redirects and posts happening, which we saw in the previous chapter, to get the access
token. That is the kind of abstraction DNOA provides to make your life easier.

As you work through this chapter, you will appreciate how fewer lines of code give you a richer functionality than
what we implemented in the previous chapter. In this chapter, you will see more lines of code in the infrastructure
side to store the data related to the clients, client authorizations, and so on rather than lines of code related to the core
OAuth 2.0. Of course, that is understandable because hard-coding a client ID, client secrets, and authorization codes at
the class level, as we did in the previous chapter, cannot get you very far in your objective to write production-strength
code. Although DNOA helps us move away from hard-coded data to nicely modeled classes, I stick to my principle
of database avoidance for the sake of brevity. In your implementation, you can easily replace the in-memory storage
with durable storage such as a database.

We use the same scenario that we used in Chapter 11: An end user, John Q. Human, wants to share the contact
information contained in his contacts application with a Promotion Manager application without divulging his
contacts application login credentials to the Promotion Manager application. We implement authorization code
grant for this scenario. Instead of building from the ground up, as we did in Chapter 12, we will use DNOA. We end
with a quick look at implementing implicit grant flow.

Note■■   DotNetOpenAuth helps you implement production-grade OAuth 2.0–based authorization. However, if you need
a prebuilt implementation that issues tokens through OAuth 2.0, Thinktecture.IdentityServer v2 is a good open-source
option for you to evaluate. Go to https://github.com/thinktecture/Thinktecture.IdentityServer.v2.

www.it-ebooks.info

http://www.dotnetopenauth.net/
https://github.com/thinktecture/Thinktecture.IdentityServer.v2
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

284

Design
As with Chapter 12, we have two ASP.NET MVC 4.0 projects as part of our Visual Studio solution.

1.	 MyContacts: This is an ASP.NET MVC 4.0 project created using the Web API template. We
can have both MVC controllers and WebAPI controllers in the same project. This project
represents both the resource server and the authorization server.

2.	 MyPromo: This is an ASP.NET MVC 4.0 project created using the Basic template.
MyPromo represents the client web application that requires the protected resource
to function.

As in Chapter 12, both projects use local IIS (not Express IIS). The project URLs are http://localhost/Contacts
for the MyContacts project and http://localhost/Promo for the MyPromo project. Instead of using localhost, use the
names defined in the hosts file of http://www.my-contacts.com/contacts and http://www.my-promo.com/promo.
This will make testing easier and less susceptible to confusion.

Note■■   We will not use a JSON Web Token or any other standard token format in this chapter. DNOA, at the time of writing
this book, does not support any of those formats. It is not a concern, though, because DNOA is used at both ends: DNOA
mints the token at the authorization server end and DNOA reads and validates the token at the resource server end.

MyContacts Project
Table 13-1 shows the classes in the MyContacts project, with a brief description of each class. Class names with a star (*)
are new classes for the MyContacts project that we didn’t work with in Chapter 12. The controller classes remain the
same as the controller classes for the MyContacts project in Chapter 12. There are no fundamental changes to the
design. I leverage forms authentication here, and for this purpose AuthenticationController is included.

Table 13-1.  Classes in the MyContacts Project

Class Name Namespace Description

HomeController MyContacts.Controllers Acts as just a placeholder for the Contacts
Manager web application. This is an MVC
controller.

OAuth20Controller MyContacts.Controllers Accepts a request for authorization codes
as well as requests for exchanging codes to
access tokens. This MVC controller is the
authorization endpoint.

ContactsController MyContacts.Controllers Returns the list of contacts. The only API
controller in our project.

AuthenticationController* MyContacts.Controllers Provides authentication or the login
functionality. Forms authentication redirects
to this controller for authentication.

CertificateHelper* MyContacts.Helpers Helps convert the subject name of a
certificate to a certificate object. This is an
extension method to string.

(continued)

www.it-ebooks.info

http://localhost/Contacts
http://localhost/Promo
http://www.my-contacts.com/contacts
http://www.my-promo.com/promo
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

285

One major change for the better is the inclusion of several classes under Infrastructure.Store representing the
entities for persistence. As I mentioned in the introduction to this chapter, I do not use a database. I store the objects
in the application domain itself, but it is not difficult to store them in a database if you prefer.

Note■■   If you plan to use a database, you will need to make minor changes in the Store classes. Because I’m not
dealing with a relational database, I don’t have to deal with the impedance mismatch between relational and object worlds.
I store the object graph directly in the AppDomain, but you would need to employ an object-relational mapper (ORM) like
the Entity Framework and design your tables with PK-FK relationships. These classes would need to reflect that.

MyPromo Project
Table 13-2 shows the two classes in the MyPromo project, with a brief description of each class. The classes are similar
to the two classes in the MyPromo project in Chapter 12. The reason the project structure does not change is because
this is the client using OAuth 2.0. The impact is only on the server side because we are using DNOA to build the server.
However, implementation details do change in this chapter because of the DNOA WebServerClient class used here.

Class Name Namespace Description

AuthorizationManager MyContacts.Infrastructure Controls access to the web API based
on the claims. This is a subclass of
ClaimsAuthorizationManager.

OAuthTokenHandler MyContacts.Infrastructure Establishes identity based on the OAuth
access token. It uses the ResourceServer
DNOA object. This is a message handler.

ServerHost* MyContacts.Infrastructure Implements IAuthorizationServerHost
needed to instantiate the
AuthorizationServer class of DNOA.

DataStore* MyContacts.Infrastructure.Store Acts as the façade of all the classes related to
storage. This is a singleton.

Client*
ClientAuthorization*
CryptoKeyStore*
Nonce*
NonceStore*
SymmetricCryptoKey*

MyContacts.Infrastructure.Store Provide functionalities related to storing client
details such as a client ID, client secret, client
authorization, nonce, and symmetric keys.

Contact MyContacts.Models Represents the contact entity. This is a
model class.

AuthorizationRequest* MyContacts.Models Helps in rendering the view or the screen
that asks the user for consent to share data.
This is a view model class.

Table 13-1.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

286

HTTP Transactions
Before we look at HTTP transactions, you need to be aware of a slight change to the screen flow in this chapter
compared to Chapter 12. In Chapter 12, we saw that the user provides consent in the same screen he uses to sign in to
the authorization server. In this chapter, there is a separate authorization screen for the user to give consent to share.
Figure 13-1 shows the screen flow.

Figure 13-1.  Promotion Manager flow

Table 13-2.  Classes in MyPromo Project

Class Name Namespace Description

HomeController MyPromo.Controllers Requests authorization code, exchanges it for a token, makes
the web API call, and shows the contacts retrieved to the user.
It uses the WebServerClient DNOA class to initiate the OAuth
2.0 flow as well as to extract the token from the response.

Contact MyPromo.Models Represents a subset of the contact business entity with only
the name and e-mail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

287

The HTTP transactions generated by DNOA are similar, but not exactly identical, to the transactions we saw in
Chapter 12. In addition to the new authorization screen, there is an additional redirect in the scenario in this chapter
because we use forms authentication.

Except for these changes, the fundamental structure of the flow related to the authorization code grant that we saw
in Chapter 11 remains unchanged. After all, the flow is defined in the OAuth 2.0 specification and must remain essentially
the same regardless of implementation details. The following HTTP transactions happen in the Promotion Manager flow.

1.	 John goes to the Promotion Manager web application home page. This is the page with the
big Get Contacts button.

Request GET http://www.my-promo.com/promo HTTP/1.1
Host: www.my-promo.com

Response HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8

<!DOCTYPE html>
<html>. . . Promotion Manager home page with big button

2.	 John clicks the Get Contacts button, triggering an HTTP POST. The /Home/Index form
with only that button gets posted to itself. DNOA tries to redirect the browser to the
authorization endpoint http://www.my-contacts.com/contacts/OAuth20, making the
request for an authorization code.

Request POST http://www.my-promo.com/promo HTTP/1.1
Referer: http://www.my-promo.com/promo
Host: www.my-promo.com

go=Get+Contacts

Response HTTP/1.1 302 Found
Content-Type: text/html; charset=utf-8
Location: http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
redirect_uri=http%3A%2F%2Fwww.my-promo.com%2FPromo%2FHome%2FExchange
&state=apqv345snyz5ghqimdt2awkd&scope=Read.Contacts&response_type=code
Set-Cookie: ASP.NET_SessionId=apqv345snyz5ghqimdt2awkd; path=/; HttpOnly

3.	 The redirect results in another redirect. Because the authorization endpoint is protected
with an Authorize attribute, it results in forms authentication making another redirect to
the Authentication controller.

Request GET http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
redirect_uri=http%3A%2F%2Fwww.my-promo.com%2FPromo%2FHome%2FExchange
&state=apqv345snyz5ghqimdt2awkd&scope=Read.Contacts&response_type=code HTTP/1.1
Referer: http://www.my-promo.com/promo
Host: www.my-contacts.com

Response HTTP/1.1 302 Found
Location: /Contacts/Authentication?ReturnUrl=%2fcontacts%2fOAuth20%3f
client_id%3d0123456789%26
redirect_uri%3dhttp%253A%252F%252Fwww.my-promo.com%252FPromo%252FHome
%252FExchange%26
state%3dapqv345snyz5ghqimdt2awkd%26scope%3dRead.Contacts%26response_type . . .

www.it-ebooks.info

http://www.my-promo.com/promo
http://www.my-promo.com/
http://www.my-contacts.com/contacts/OAuth20
http://www.my-promo.com/promo
http://www.my-promo.com/promo
http://www.my-promo.com/
http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
http://www.my-promo.com/promo
http://www.my-contacts.com/
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

288

4.	 The redirect results in a GET to Authorization/Index, which renders the login page for the
user to enter credentials.

Request GET http://www.my-contacts.com/Contacts/Authentication?
ReturnUrl=%2fcontacts%2fOAuth20%3f… HTTP/1.1
Referer: http://www.my-promo.com/promo
Host: www.my-contacts.com

Response HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8

<html>. . . . Login page generated by AuthenticationController

5.	 John enters the credentials and submits the form, resulting in a POST.

Request POST http://www.my-contacts.com/Contacts/Authentication?
ReturnUrl=%2fcontacts%2fOAuth20%3fclient_id%3d0123456789%26
redirect_uri%3dhttp%253A%252F%252Fwww.my-promo.com%252FPromo%252F
Home%252FExchange%26
state%3dapqv345snyz5ghqimdt2awkd%26scope%3dRead.Contacts%26
response_type%3dcode&client_id=0123456789&
redirect_uri=http%3A%2F%2Fwww.my-promo.com%2FPromo%2FHome%2FExchange
&state=apqv345snyz5ghqimdt2awkd&scope=Read.Contacts
&response_type=code HTTP/1.1
Referer: http://www.my-contacts.com/Contacts/Authentication?ReturnUrl. . .
Host: www.my-contacts.com

userId=jqhuman&password=jqhuman

Response HTTP/1.1 302 Found
Location: /contacts/OAuth20?client_id=0123456789&redirect_
uri=http%3A%2F%2Fwww.my-promo.com%2FPromo%2FHome%2FExchange
&state=apqv345snyz5ghqimdt2awkd&scope=Read.Contacts&response_type=code
Set-Cookie: .MyContacts=67AF4EA87E. . . 0694AA; path=/; HttpOnly

6.	 After authentication, the browser is redirected to the authorization endpoint. This is the
same as Step 3 except that it will go through this time, in contrast to the last time when
it failed with a 401 and got redirected for want of a forms authentication ticket. Now, the
request contains the cookie .MyContacts, which is the ticket. Because of this, John gets to
see the authorization screen, where he can give his consent to share the data.

Request GET http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
redirect_uri=http%3A%2F%2Fwww.my-promo.com%2FPromo%2FHome%2FExchange&
state=apqv345snyz5ghqimdt2awkd&scope=Read.Contacts&response_type=code HTTP/1.1
Referer: http://www.my-contacts.com/Contacts/Authentication?ReturnUrl=%2f
contacts%2fOAuth20%3f. . .
Cookie: <Other cookies> .MyContacts=67AF4EA87E3…694AA
Host: www.my-contacts.com

www.it-ebooks.info

http://www.my-contacts.com/Contacts/Authentication
http://www.my-promo.com/promo
http://www.my-contacts.com/
http://www.my-contacts.com/Contacts/Authentication
http://www.my-contacts.com/Contacts/Authentication?ReturnUrl
http://www.my-contacts.com/
http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
http://www.my-contacts.com/Contacts/Authentication?ReturnUrl=%2fcontacts%2fOAuth20%3f
http://www.my-contacts.com/Contacts/Authentication?ReturnUrl=%2fcontacts%2fOAuth20%3f
http://www.my-contacts.com/
http://www.it-ebooks.info/

th

289

Response HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8

<!DOCTYPE html>
<html>. . . . Authorization screen where user clicks ‘Yes’ to give consent to share

7. DNOA does an HTTP POST to the authorization endpoint, specifying the redirect URI as
http://www.my-promo.com/promo/Home/Exchange and the response_type as code. The
authorization endpoint redirects to this URI passing along the authorization code in the
query string.

Request POST http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
redirect_uri=http%3A%2F%2Fwww.my-promo.com%2FPromo%2FHome%2FExchange&
state=apqv345snyz5ghqimdt2awkd&scope=Read.Contacts&response_type=code HTTP/1.1
Referer: http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
redirect_uri=http%3A%2F%2Fwww.my-promo.com%2FPromo%2FHome%2FExchange&
state=apqv345snyz5ghqimdt2awkd&scope=Read.Contacts&response_type=code
Host: www.my-contacts.com
Cookie: .MyContacts=67AF4EA8 41FD0694AA

client_id=0123456789&redirect_uri=http%3A%2F%2Fwww.my-promo.com%
2FPromo%2FHome%2FExchange&
state=apqv345snyz5ghqimdt2awkd&scope=Read.Contacts&
response_type=code&userApproval=Yes

Response HTTP/1.1 302 Found
Location: http://www.my-promo.com/Promo/Home/Exchange?
code=eMSd% . . . 2Fnw&state=apqv345snyz5ghqimdt2awkd

8. DNOA exchanges the authorization code for a token by making an HTTP request. Next, the
/Home/Exchange action method makes a GET to the ContactsController web API with
the OAuth 2.0 access token in the HTTP authorization header (bearer scheme) to get the
JSON response, which is passed to the view as the model for rendering.

Request GET http://www.my-promo.com/Promo/Home/Exchange?code=eMSd% . . . 2Fnw&state=apqv345
snyz5ghqimdt2awkd HTTP/1.1
Referer: http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
redirect_uri=http%3A%2F%2Fwww.my-promo.com%2FPromo%2FHome%2FExchange&
state=apqv345snyz5ghqimdt2awkd&scope=Read.Contacts&response_type=code
Cookie: ASP.NET_SessionId=apqv345snyz5ghqimdt2awkd
Host: www.my-promo.com

Response HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8

<!DOCTYPE html>
<html> . . . Contacts shown

Step 8 has substeps, the most notable one being DNOA making a POST request with the client ID and client
secret as the username and password in the authorization header using a basic scheme to obtain an access token.

www.it-ebooks.info

http://www.my-promo.com/promo/Home/Exchange
http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
http://www.my-contacts.com/
http://www.my-promo.com/Promo/Home/Exchange
http://www.my-promo.com/Promo/Home/Exchange?code=eMSd%25%E2%80%A62Fnw&state=apqv345snyz5ghqimdt2awkd
http://www.my-promo.com/Promo/Home/Exchange?code=eMSd%25%E2%80%A62Fnw&state=apqv345snyz5ghqimdt2awkd
http://www.my-contacts.com/contacts/OAuth20?client_id=0123456789&
http://www.my-promo.com/
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

290

Request POST http://www.my-contacts.com/contacts/OAuth20/Token HTTP/1.1
Content-Type: application/x-www-form-urlencoded; charset=utf-8
User-Agent: DotNetOpenAuth/<version>
Authorization: Basic MDEyMzQ1Njc4OTpU0SjNNZ2RHaGxJSGR2Y21RaElTRT0=
Host: www.my-contacts.com

code=eMSd%21IAA . . . &redirect_uri=http%3A%2F%2Fwww.my-promo.com%2FPromo
%2FHome%2FExchange&grant_type=authorization_code

Response HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{ “access_token”:”gAAAAGih . . . AzoE”, “token_type”:”bearer”, “expires_in”:”120”,
“refresh_token”:”T2C9!IAAAAO…Q0UQ”, “scope”:”Read.Contacts” }

Once the access token is retrieved, the Promotion Manager /Home/Exchange uses the access token as a bearer
token and makes the call to the Contacts Manager web API. The HTTP request and the resulting JSON response are
exactly identical to the transaction we saw in Chapter 12; for this reason, I don’t repeat the information here.

Note■■   The previous step is important from the perspective of implementation. The older versions of DNOA send two
requests: the first one without the credentials that results in a 401 – Unauthorized, followed by one with the credentials.
Refer to the issue https://github.com/DotNetOpenAuth/DotNetOpenAuth/issues/195 for more details.

Implementation Ground Work
First, we add the DotNetOpenAuth library into our projects and make a few configuration changes to get it working.
The following are the steps.

1.	 Right-click the References node under the project MyPromo in the Visual Studio Solution
Explorer and select Manage NuGet Packages.

2.	 Go to Online ➤ All and search for DotNetOpenAuth.

3.	 In the search results, locate the file with the name of DotNetOpenAuth (unified). It is
a single .dll with everything in it. I’m using version 4.2.1.13026. Figure 13-2 shows the
Manage NuGet Packages Visual Studio window so you can verify you are using the right
DNOA assembly, the same assembly as the one I use.

www.it-ebooks.info

http://www.my-contacts.com/contacts/OAuth20/Token%20HTTP/1.1
http://www.my-contacts.com/
https://github.com/DotNetOpenAuth/DotNetOpenAuth/issues/195
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

291

4.	 Install the DNOA assembly in the MyContacts project as well, similar to the previous steps.

5.	 I use Visual Studio 2012 in Windows 7 targeting the .NET Framework 4.5. Depending
on the version, you might get a slightly different behavior. If you get a configuration
error that “There is a duplicate ‘uri’ section defined,” you might need to comment out
the line <section name="uri" type="System.Configuration.UriSection . . . under
<configSections> in both projects.

6.	 Because we do not use HTTPS for the sake of simplicity, edit the messaging
node under dotNetOpenAuth to add an attribute such as <messaging
relaxSslRequirements="true"> in both projects.

Caution■■   Never go to production without HTTPS. OAuth 2.0 heavily banks on transport security.

Building the Client Application
The Promotion Manager web application is the client application. This is an ASP.NET MVC 4.0 Web application.
HomeController is the major component of this application and there are two action methods: Index and
Exchange. There is not much change to this application compared to the implementation in Chapter 12.
HomeController has the exact same methods, an Index and an Exchange method. The following steps show how to
build our client application.

Figure 13-2.  Manage NuGet Packages

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

292

1.	 Because we used the Basic template to create the MyPromo project in Visual Studio,
you must manually add the HomeController class. Create a new MVC controller for this
purpose. Listing 13-1 shows the bare-bones HomeController with a few fields, to which we
add the action methods, as we progress through the steps. The following is an overview of
the fields and the variables.

a.	 The token issuance and authorization endpoints of the authorization server are
stored in two constants. This is a slightly different behavior compared to the previous
chapter where there is only one endpoint.

b.	 The client ID and client secret are hard-coded here for the sake of simplicity.
At least the client secret must be read from the encrypted configuration in a
production environment.

c.	 A static object of type AuthorizationServerDescription is created using the
authorization server endpoints. The same is used to create an instance of the
WebServerClient object, which is central to the working of HomeController.

Listing 13-1.  HomeController

public class HomeController : Controller
{
 const string TOKEN_ENDPOINT = "http://www.my-contacts.com/contacts/OAuth20/Token";
 const string AUTHZ_ENDPOINT = "http://www.my-contacts.com/contacts/OAuth20";
 
 private readonly string clientId = "0123456789";
 private readonly string clientSecret = "TXVtJ3MgdGhlIHdvcmQhISE=";
 private readonly WebServerClient client;
 
 private static AuthorizationServerDescription authServer = new

AuthorizationServerDescription()
 {
 TokenEndpoint = new Uri(TOKEN_ENDPOINT),
 AuthorizationEndpoint = new Uri(AUTHZ_ENDPOINT),
 };
 
 public HomeController()
 {
 client = new WebServerClient(authServer, clientId, clientSecret);
 }
 
 // Action methods go here
}
 

2.	 Add the Index action method, as shown in Listing 13-2. As with the previous chapter, this
action method handles both GET and POST. When the user clicks the Get Contacts button,
the RequestUserAuthorization() method of the WebServerClient object is called passing
in the scope and the redirect URI. This call sets the wheels in motion and the OAuth flow is
triggered. A browser redirection happens a few times when the user enters the credentials
for authentication and gives consent to share data. Finally the browser is redirected to the
redirect URI, which corresponds to the Exchange action method.

www.it-ebooks.info

http://www.my-contacts.com/contacts/OAuth20/Token
http://www.my-contacts.com/contacts/OAuth20
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

293

Listing 13-2.  Index Method

public ActionResult Index(string go)
{
 if (!String.IsNullOrWhiteSpace(go))
 {
 client.RequestUserAuthorization(new[] { "Read.Contacts" },
 new Uri(Url.Action("Exchange", "Home", null,

Request.Url.Scheme)));
 }
 
 return View();
}

 

3.	 Add the Exchange action method, as shown in Listing 13-3. Note the following points.

a.	 In the Exchange action method, the ProcessUserAuthorization method of the
WebServerClient object is called to get the access token as well as the refresh token.

b.	 Refreshing the access token that is about to expire or has already expired is just a
single line of code. The RefreshAuthorization method of the WebServerClient
object refreshes the tokens. The second parameter of this method takes in a
TimeSpan, which is the cutoff based on which token is refreshed. If the remaining
lifetime of the access token exceeds this TimeSpan, the token will not be refreshed.

c.	 Once the access token is obtained, the call to the web API is the same as how it was
done in the previous chapter; that is, pass the token in the authorization header in the
bearer scheme.

Listing 13-3.  Exchange Action Method

public ActionResult Exchange()
{
 var authorization = client.ProcessUserAuthorization();
 if (authorization != null)
 {
 if (authorization.AccessTokenExpirationUtc.HasValue)
 client.RefreshAuthorization(authorization, TimeSpan.FromSeconds(30));
 
 string token = authorization.AccessToken;
 
 string result = String.Empty;
 using (HttpClient httpClient = new HttpClient())
 {
 httpClient.DefaultRequestHeaders.Authorization = new

AuthenticationHeaderValue("Bearer", token);
 var apiResponse = httpClient.GetAsync(
 "http://www.my-contacts.com/contacts/api/contacts").Result;
  

www.it-ebooks.info

http://www.my-contacts.com/contacts/api/contacts
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

294

 if (apiResponse.IsSuccessStatusCode)
 {
 result = apiResponse.Content.ReadAsStringAsync().Result;
 
 var contacts = JsonConvert.DeserializeObject<IEnumerable<Contact>>

(result);
 
 return View(contacts);
 }
 }
 }
 
 return View();
}
 

4.	 Because we replaced the custom code in the controller with equivalent DNOA calls, the
views remain the same as the ones in Chapter 12, so I don’t repeat the views here. Copy
the Contact class and two views—Home/Index view (Index.cshtml) and Home/Exchange
view (Exchange.cshtml)—from the previous chapter into the Models folder and
Views\Home folder, respectively, to complete the MyPromo project.

In contrast to the ground-up implementation in Chapter 12, where we dealt with the nuts and bolts of OAuth 2.0
using HTTP, DNOA provides a great class here: WebServerClient. If you think about the overall authorization code
grant flow, a client needs to request user authorization and process the authorization to obtain a token. That is what
happens with the call to RequestUserAuthorization() and then ProcessUserAuthorization().

Building the Authorization Server
The authorization server includes two logical components: (1) the façade provided by OAuth20Controller in terms of
the endpoints for requesting an authorization code and the access token, and (2) the DNOA-specific classes powering
our authorization server from behind the scenes. The process of building the preceding two components can be
broken down into the following steps.

1.	 Creating the infrastructure classes needed by DNOA to manage the client, client
authorizations, and so on.

2.	 Creating the IAuthorizationServerHost implementation.

3.	 Creating the OAuth20Controller class. DNOA requires two endpoints specified in the
authorization server, one for authorization and one for getting the token. We used the URI
www.my-contacts.com/contacts/OAuth20 in the previous chapter. We retain that as the
authorization endpoint and use www.my-contacts.com/contacts/OAuth20/Token
as the endpoint for token issuance. The two action methods, Index and Token, of
OAuth20Controller represent the two endpoints.

4.	 Securing the endpoints exposed by OAuth20Controller by implementing forms
authentication using another MVC controller, AuthenticationController.

www.it-ebooks.info

http://www.my-contacts.com/contacts/OAuth20
http://www.my-contacts.com/contacts/OAuth20/Token
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

295

Creating the Infrastructure
The first step in building the authorization server with DNOA is creating the infrastructure for the DNOA classes
to store and retrieve the client details, authorizations by the client, the associated authorization codes, and the
cryptographic keys to encrypt and sign authorization codes and refresh tokens.

Design
I have a singleton class, DataStore, acting as the façade of the other infrastructure classes. Figure 13-3 shows the class
diagram generated by Visual Studio for DataStore and the two infrastructure classes related to the client details and
the authorizations granted by the resource owners, namely Client and ClientAuthorization.

Figure 13-3.  Infrastructure classes

DataStore has a list of Client with each of these objects representing a client application. In our case,
Promotions Manager is the only client application. The Client class implements the IClientDescription interface
provided by DNOA. Client has a list of ClientAuthorization, with each instance of this class representing a user
authorization against which a token is issued.

DataStore has two properties of type ICryptoStore and INonceStore, respectively. The implementations for
these interfaces that are provided by DNOA are CryptoKeyStore and NonceStore classes, respectively. NonceStore
stores Nonce objects and CryptoKeyStore stores SymmetricCryptoKey objects, as shown in Figure 13-4. These classes
are used by DNOA classes internally in the OAuth 2.0 flow. CryptoKeyStore represents the store for storing crypto
keys used to symmetrically encrypt and sign authorization codes and refresh tokens. NonceStore represents the store
for storing authorization codes. The purpose of this store is to ensure authorization codes are used only once. A nonce
is a number used once.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

296

Figure 13-4.  Nonce and Crypto Stores

Implementing the Infrastructure Classes
The following steps show how to implement the classes covered in the previous section. All classes in this section will
be created in the Store folder under the Infrastructure folder.

1.	 Create the folder Infrastructure and the child folder Store.

2.	 Create the DataStore class, as shown in Listing 13-4. It has a static reference to an object of
type DataStore and all access is through the Instance property, making this a singleton.
It has a list of Client objects. Currently, the list has one Client object representing
Promotions Manager.

Listing 13-4.  DataStore

public class DataStore
{
 private static DataStore store = null;
 
 static DataStore()
 {
 store = new DataStore();
 }
 
 private DataStore()
 {
 this.Clients = new List<Client>();
 this.CryptoKeyStore = new CryptoKeyStore();
 this.NonceStore = new NonceStore();
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

297

 this.Clients.Add(
 new Client()
 {
 Name = "My Promotion Manager",
 ClientIdentifier = "0123456789",
 ClientSecret = "TXVtJ3MgdGhlIHdvcmQhISE=",
 DefaultCallback = new Uri("http://www.my-promo.com/promo"),
 ClientType = ClientType.Confidential
 });
 }
 
 public static DataStore Instance
 {
 get
 {
 return store;
 }
 }
 
 
 public IList<Client> Clients { get; set; }
 
 public ICryptoKeyStore CryptoKeyStore { get; set; }
 public INonceStore NonceStore { get; set; }
}
 

3.	 Create the ClientAuthorization class, as shown in Listing 13-5. An authorization is given
by the user for a scope. Hence, ClientAuthorization has these two properties: UserId
and Scope. In our example, we deal with one scope only but there can be multiple scopes.
For this reason, scope is defined as HashSet<string>. No duplicates are allowed.

Listing 13-5.  ClientAuthorization Class

public class ClientAuthorization
{
 public DateTime IssueDate { get; set; }
 
 public string UserId { get; set; }
 
 public HashSet<string> Scope { get; set; }
 
 public Nullable<DateTime> ExpirationDateUtc { get; set; }
}

 

4.	 ClientAuthorization cannot exist without a Client. There will be multiple
authorizations against a Client. Create the Client class, as shown in Listing 13-6. Client
implements IClientDescription, an interface provided by DNOA. Following are the
points to note about this class.

www.it-ebooks.info

http://www.my-promo.com/promo
Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

298

a.	 A redirect URI provided by the client application (Promotion Manager, in our case)
while making the requests is passed to the IsCallbackAllowed method for you to
verify if the URI is valid and acceptable. The host, port, and scheme (HTTP/HTTPS) of
the incoming URI is compared against the default callback registered against the client
in the DataStore class. It is up to you to implement the logic here based on how lenient
or how rigid you want to be with respect to checking the redirect URI coming in
the requests.

b.	 The property HasNonEmptySecret and the method IsValidClientSecret are plain
vanilla implementations. The code itself is self-explanatory. DNOA calls these methods
at various times to make sure the request is valid.

Listing 13-6.  Client Class

public class Client : IClientDescription
{
 public string ClientIdentifier { get; set; }
 
 public string ClientSecret { get; set; }
 
 public Uri DefaultCallback { get; set; }
 
 public string Name { get; set; }
 
 public ClientType ClientType { get; set; }
 
 public IList<ClientAuthorization> ClientAuthorizations { get; set; }
 
 public Client()
 {
 this.ClientAuthorizations = new List<ClientAuthorization>();
 }
 
 public bool HasNonEmptySecret
 {
 get { return !string.IsNullOrEmpty(this.ClientSecret); }
 }
 
 public bool IsCallbackAllowed(Uri callback)
 {
 return callback.Scheme == this.DefaultCallback.Scheme &&
 callback.Host == this.DefaultCallback.Host &&
 callback.Port == this.DefaultCallback.Port;
 }
 
 public bool IsValidClientSecret(string secret)
 {
 return MessagingUtilities.EqualsConstantTime(secret, this.ClientSecret);
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

th

299

5. Create the Nonce class, as shown in Listing 13-7. Nonce represents the authorization code
generated by the authorization server. For subsequent validation, Nonce is stored in a
NonceStore.

Listing 13-7. Nonce Class

public class Nonce
{
 public string Context { get; set; }

 public string Code { get; set; }

 public DateTime Timestamp { get; set; }
}

6. Create the NonceStore class, as shown in Listing 13-8. By virtue of implementing the
INonceStore interface, NonceStore implements the StoreNonce method. When DNOA
calls this method with a nonce, context, and timestamp that is not already present, we
insert and return true. When this combination is already present, we return false and
DNOA rejects the request because it could be a replay attack.

Listing 13-8. NonceStore and Nonce Classes

public class NonceStore : INonceStore
{
 private IList<Nonce> nonces = new List<Nonce>();

 public bool StoreNonce(string context, string nonce, DateTime timestampUtc)
 {
 if (nonces.Any(n => n.Context == context &&
 n.Code == nonce &&
 n.Timestamp == timestampUtc))
 return false; // Possibly a replay attack, return false
 else
 {
 Nonce newNonce = new Nonce { Context = context, Code = nonce, Timestamp = timestampUtc };

 nonces.Add(newNonce);
 return true;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

300

Caution■■   While exchanging the authorization code for a token, the older versions of DNOA send two requests: one
without the credential resulting in 401 – Unauthorized, followed by the request with credentials. For this reason, the
StoreNonce method in the class implementing INonceStore (Listing 13-8) gets called twice in the implementations using
the older versions of DNOA. Our current logic would fail the second request, assuming it is a replay. Ensure you use the
latest version of DNOA.

7.	 Create the SymmetricCryptoKey class, as shown in Listing 13-9. The SymmetricCryptoKey
class inherits the CryptoKey class provided by DNOA and, by virtue of inheritance, gets
the Key and ExpiresUtc properties. Because symmetric keys are shared between two
parties, DNOA changes them periodically. ExpiresUtc is important from that perspective.
ExpiresUtc defines the lifetime of a key, after which a key is discarded and a new one is
generated by DNOA.

Listing 13-9.  SymmetricCryptoKey Class

public class SymmetricCryptoKey : CryptoKey
{
 public SymmetricCryptoKey(byte[] key, DateTime expiresUtc) : base(key, expiresUtc) {
}
 
 public SymmetricCryptoKey(CryptoKey key) : base(key.Key, key.ExpiresUtc) { }
 
 public string Bucket { get; set; }
 
 public string Handle { get; set; }
}
 

8.	 Create the CryptoKeyStore class, as shown in Listing 13-10. DNOA uses symmetric keys
to encrypt and sign authorization codes and refresh tokens. These keys are stored in the
crypto key store, an object implementing ICryptoKeyStore. DNOA calls the methods
defined in this interface to store and retrieve keys.

Listing 13-10.  CryptoKeyStore Class

public class CryptoKeyStore : ICryptoKeyStore
{
 private IList<SymmetricCryptoKey> cryptoKeys = new List<SymmetricCryptoKey>();
 
 public CryptoKey GetKey(string bucket, string handle)
 {
 return cryptoKeys.Where(k => k.Bucket == bucket && k.Handle == handle).FirstOrDefault();
 }
 
 public IEnumerable<KeyValuePair<string, CryptoKey>> GetKeys(string bucket)
 {
 return cryptoKeys.Where(k => k.Bucket == bucket)
 .OrderByDescending(o => o.ExpiresUtc)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

301

 .Select(kvp => new KeyValuePair<string, CryptoKey>(kvp.Handle, kvp));
 }
 
 public void RemoveKey(string bucket, string handle)
 {
 var key = cryptoKeys.FirstOrDefault(k => k.Bucket == bucket && k.Handle == handle);
 if (key != null)
 cryptoKeys.Remove(key);
 }
 
 public void StoreKey(string bucket, string handle, CryptoKey key)
 {
 cryptoKeys.Add(new SymmetricCryptoKey(key) { Bucket = bucket, Handle = handle });
 }
}
 

With this, we have completed the implementation of classes that are needed by DNOA to issue authorization
codes and tokens. DNOA classes call our classes as part of the OAuth 2.0 flow.

Creating the IAuthorizationServerHost Implementation
All the infrastructure classes that we have seen so far—Client, ClientAuthorization, CryptoKeyStore,
and NonceStore—are all brought together by one class, the ServerHost class that implements the
IAuthorizationServerHost interface. ServerHost does all the heavy lifting related to dealing with the infrastructure
classes.

The AuthorizationServer class provided by DNOA is the underpinning of the server side OAuth. We
have seen WebServerClient in action in the client side. The server-side equivalent of the WebServerClient
is AuthorizationServer. To instantiate AuthorizationServer, an instance of ServerHost is needed. The
CryptoKeyStore and NonceStore infrastructure classes are available to DNOA through the properties exposed by the
IAuthorizationServerHost interface. The following steps show how to build the ServerHost class.

1.	 Create a class ServerHost in the Infrastructure folder, as shown in Listing 13-11.

a.	 Implement CryptoKeyStore and NonceStore properties returning the corresponding
properties of our infrastructure façade DataStore.

b.	 I chose not to implement the TryAuthorizeClientCredentialsGrant,
TryAuthorizeResourceOwnerCredentialGrant,
CheckAuthorizeClientCredentialsGrant, and
CheckAuthorizeResourceOwnerCredentialGrant methods of the
IAuthorizationServerHost interface because these methods are not relevant for the
authorization code grant.

c.	 Implement the GetClient method to return the Client object corresponding to the
incoming client ID from the list of clients maintained in the DataStore.

Listing 13-11.  ServerHost Class (Partially Implemented)

public class ServerHost : IAuthorizationServerHost
{
 public ICryptoKeyStore CryptoKeyStore
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

302

 get { return DataStore.Instance.CryptoKeyStore; }
 }
 
 public INonceStore NonceStore
 {
 get { return DataStore.Instance.NonceStore; }
 }
 
 public IClientDescription GetClient(string clientIdentifier)
 {
 return DataStore.Instance.Clients.First(c => c.ClientIdentifier == clientIdentifier);
 }
 
 public bool TryAuthorizeClientCredentialsGrant(IAccessTokenRequest accessRequest)
 {
 throw new NotImplementedException();
 }
 
 public bool TryAuthorizeResourceOwnerCredentialGrant(string userName, string password,

IAccessTokenRequest accessRequest,
out string canonicalUserName)

 {
 throw new NotImplementedException();
 }
  
 public AutomatedAuthorizationCheckResponse CheckAuthorizeClientCredentialsGrant(

IAccessTokenRequest accessRequest)
 {
 throw new NotImplementedException();
 }
 
 public AutomatedUserAuthorizationCheckResponse
 checkAuthorizeResourceOwnerCredentialGrant(
 string userName, string password,
 IAccessTokenRequest accessRequest)
 {
 throw new NotImplementedException();
 }
}
 

2.	 Implement the IsAuthorizationValid method, as shown in Listing 13-12. Look for
a client authorization that has not expired yet, with the user ID matching the incoming
user ID. Ensure the scope list requested is a subset of the scopes granted by the user for
this matching authorization. In our example scenario it is just one scope, yet the code is
future-proof to handle multiple scopes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

303

Listing 13-12.  IsAuthorizationValid Method

public bool IsAuthorizationValid(IAuthorizationDescription authorization)
{
 var client = DataStore.Instance.Clients
 .First(c => c.ClientIdentifier ==
 authorization.ClientIdentifier);
 
 var authorizations = client.ClientAuthorizations
 .Where(a => a.UserId == authorization.User &&
 a.IssueDate <=
 authorization.UtcIssued.AddSeconds(1) &&
 (!a.ExpirationDateUtc.HasValue ||
 a.ExpirationDateUtc.Value >=
 DateTime.UtcNow));
 if (!authorizations.Any()) // No authorizations
 return false;
 
 var grantedScopes = new HashSet<string>();
 authorizations.ToList().ForEach(a => grantedScopes.UnionWith(a.Scope));
 
 return authorization.Scope.IsSubsetOf(grantedScopes);
}
 

3.	 Implement the CreateAccessToken method that creates the token, which will be signed and
encrypted, as shown in Listing 13-13. We will use X.509 certificates to provide us with the
public–private key pairs for this purpose. The token will be signed with the private key of
the authorization server and encrypted with the public key of the resource server. The X.509
certificate corresponding to the authorization server will contain both public and private
keys in the server running the authorization server. In the server running the resource
server, the same authorization server certificate will contain only the public key. This is just
the opposite for the resource server certificate. Figure 13-5 shows the keys distribution in a
typical production environment. However, I use the same machine for running both servers
and hence both certificates with both keys are present on my computer.

Authorization Server Resource Server

CN=AuthSrv CN=ResSrv CN=ResSrv CN=AuthSrv
Private Key
and Public Key

Signs with Encrypts with Decrypts with Validates with

Public Key
only

Public Key
only

Private Key
and Public Key

Figure 13-5.  Signing and encryption keys distribution

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

304

Listing 13-13.  CreateAccessToken Method

public AccessTokenResult CreateAccessToken(IAccessTokenRequest request)
{
 var accessToken = new AuthorizationServerAccessToken();
 accessToken.Lifetime = TimeSpan.FromMinutes(2);
 
 // Using the certificate of our one and only resource server blindly
 accessToken.ResourceServerEncryptionKey = (RSACryptoServiceProvider)WebApiApplication
 .EncryptionCertificate.PublicKey.Key;
 
 accessToken.AccessTokenSigningKey = (RSACryptoServiceProvider)WebApiApplication
 .SigningCertificate.PrivateKey;
 
 var result = new AccessTokenResult(accessToken);
 return result;
 }
 

One more point to note about the CreateAccessToken() method is that, because we have only one resource
server in the form of the contacts manager, I blindly return the key corresponding to it. If one authorization server
serves multiple resource servers, the certificate corresponding to the resource server for which the token is being
requested must be used. For this purpose, DNOA passes in an object of type IAccessTokenRequest for us to inspect.

4.	 Define the keys needed by the CreateAccessToken method at the application level as static
properties in Global.asax.cs, as shown in Listing 13-14.

Listing 13-14.  Global.asax.cs: WebApiApplication

public class WebApiApplication : System.Web.HttpApplication
{
 private static X509Certificate2 signingCertificate = "CN=AuthSrv".ToCertificate();
 private static X509Certificate2 encryptionCertificate = "CN=ResSrv".ToCertificate();
 
 public static X509Certificate2 SigningCertificate
 {
 get
 {
 return signingCertificate;
 }
 }
 
 public static X509Certificate2 EncryptionCertificate
 {
 get
 {
 return encryptionCertificate;
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

305

RUNNING THE APPLICATION IN IIS

If you are deploying the applications in IIS, our application will have difficulty accessing the private keys of the
certificates. You will need to give the IIS application pool account access to the private keys of both certificates.

On my machine, I use the default application pool. I have given access to the private keys to IIS_IUSRS group,
which is the built-in group used by IIS.

To give access to private keys, use the following steps.

1.	U se Microsoft Management Console (MMC). You can launch MMC by typing mmc in the
Run box.

2.	 Select File ➤ Add/Remove snap-in.

3.	 On the left side of Available snap-ins, select the Certificates snap-in and click Add.

4.	 Select Computer account, local computer to see the certificates on your computer.

5.	� Locate the certificate under Personal ➤ Certificates. Right-click the certificate and select Manage
Private Keys . . . in the shortcut menu and add the user account, as shown in Figure 13-6.

Figure 13-6.  Providing access to private keys through MMC

 protected void Application_Start()
 {
 ...
 }
}
 

X.509 certificates corresponding to the subject names CN=AuthSrv and CN=ResSrv are generated using the
Makecert tool, as we saw in Chapter 6. The extension method that returns the X509Certificate2 object from the
subject name string is also from Chapter 6. Copy this class into the Helpers folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

306

Creating OAuth20Controller
OAuth20Controller has Index and Token action methods representing the authorization and token issuance
endpoints, respectively. There are three action methods in the controller.

1.	 Index action method that handles HTTP GET: This action method handles the redirect
request, which is the first step of the authorization code grant flow. The view that this
action method returns is the authorization page where a user consents to share the
protected resource, which in our scenario is the contact information.

2.	 Index action method that handles HTTP POST: This action method handles the form
post triggered by the user clicking the Yes or No button on the authorization page. If the
user consents to share, this action method returns an authorization code in the query
string of the redirect URI.

3.	 Token action method: This action method returns the access token.

The following steps show how to create the OAuth20Controller class.

1.	 Unlike the OAuth20Controller that we saw in Chapter 12 that dealt with the nuts and
bolts, this controller will be simple because it uses the AuthorizationServer class
provided by DNOA. An instance of AuthorizationServer is created by passing in an
instance of the ServerHost class that we saw in the preceding subsection. Create a new
MVC controller, as shown in Listing 13-15.

Listing 13-15.  OAuth20Controller

public class OAuth20Controller : Controller
{
 �private readonly AuthorizationServer server = new AuthorizationServer

(new ServerHost());
 
 // Action methods go here
}
 

2.	 Add the Index action method that handles HTTP GET. Read the authorization request by
calling the ReadAuthorizationRequest() method on the AuthorizationServer instance.
Create an instance of the view model AuthorizationRequest and send that to the view
for rendering. See Listing 13-16. Pay attention to the Authorize filter applied to this action
method. I cover the details related to this in the next section.

Listing 13-16.  Index Action Method (HTTP GET)

[Authorize]
public ActionResult Index()
{
 var request = this.server.ReadAuthorizationRequest();
 if (request == null)
 throw new HttpException((int)HttpStatusCode.BadRequest, "Bad request");
 
 var model = new AuthorizationRequest
 {
 ClientApp = DataStore.Instance.Clients
 .First(c => c.ClientIdentifier == request.ClientIdentifier).Name,
 Scope = request.Scope,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

307

 Request = request,
 };
 
 return View(model);
}
 

3.	 Create the AuthorizationRequest view model class in the Models folder. See Listing 13-17.

Listing 13-17.  AuthorizationRequest View Model

public class AuthorizationRequest
{
 public string ClientApp { get; set; }
 
 public HashSet<string> Scope { get; set; }
 
 public EndUserAuthorizationRequest Request { get; set; }
}
 

4.	 Create the view corresponding to the Index action method, as shown in Listing 13-18.

Listing 13-18.  Index View Index.cshtml: View of /OAuth20/Index

@model MyContacts.Models.AuthorizationRequest
 
@{
 ViewBag.Title = "Sharing";
}
 
<h2>Would you like to share the MyContacts application data with @Model.ClientApp?</h2>
<div>
 To be Shared:
 @String.Join(" ", Model.Scope.ToArray())
</div>
 
@using (Html.BeginForm())
{
 @Html.Hidden("client_id", Model.Request.ClientIdentifier)
 @Html.Hidden("redirect_uri", Model.Request.Callback)
 @Html.Hidden("state", Model.Request.ClientState)
 @Html.Hidden("scope", DotNetOpenAuth.OAuth2.OAuthUtilities.JoinScopes(Model.Request.Scope))
 @Html.Hidden("response_type", "code")

 <input type="submit" name="userApproval" value="Yes"/>
}
 
Go back to Promotion Manager
 

www.it-ebooks.info

http://www.my-promo.com/promo
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

308

5.	 The AuthorizationRequest view model is rendered by the view in Step 4. The resulting
screen, which is the authorization screen, asks the user for consent to share the data
listing the scopes in the request. When the user clicks the Yes or No button, the HTML
form is posted to /OAuth20/Index with the response_type of code. Create the Index action
method to handle this POST, as shown in Listing 13-19. The following steps constitute the
processing that happens in this method.

a.	 Read the request using the ReadAuthorizationRequest method of the
AuthorizationServer instance.

b.	 If the user agrees to share data by clicking Yes, the userApproval parameter of the
action method will be nonempty. Based on this parameter, store the authorization
against the user and the client, respectively John Q. Human (jqhuman) and the
Promotion Manager web application.

c.	 If the user agrees to share the protected resource of the contact information, call
the PrepareApproveAuthorizationRequest method on the AuthorizationServer
instance.

d.	 The message thus prepared is passed into the PrepareResponse method and
ultimately the ActionResult object is sent back. The response thus sent contains the
authorization code.

e.	 WebServerClient, which we used in the client side from the Promotion Manager
HomeController, retrieves this code and makes a request to /OAuth20/Token to
exchange the code for an access token.

Listing 13-19.  Index Action Method (HTTP POST)

[Authorize, HttpPost]
public ActionResult Index(string userApproval)
{
 var request = this.server.ReadAuthorizationRequest();
 if (request == null)
 throw new HttpException((int)HttpStatusCode.BadRequest, "Bad request");
 
 if (!String.IsNullOrWhiteSpace(userApproval))
 {
 // Record the authorization against the client and user
 DataStore.Instance.Clients
 .First(c => c.ClientIdentifier == request.ClientIdentifier)
 .ClientAuthorizations.Add(
 new ClientAuthorization
 {
 Scope = request.Scope,
 UserId = User.Identity.Name,
 IssueDate = DateTime.UtcNow
 });
 
 var response = this.server.PrepareApproveAuthorizationRequest(request,

User.Identity.Name);
 

www.it-ebooks.info

http://www.it-ebooks.info/

th

309

 return this.server.Channel.PrepareResponse(response).AsActionResult();
 }

 return View();
}

6. Create the Token action method, as shown in Listing 13-20. From the Token action method,
just call the HandleTokenRequest method on the AuthorizationServer instance. DNOA
takes care of minting the token and sending it back to the client.

Listing 13-20. Token Action Method

public ActionResult Token()
{

 return this.server.HandleTokenRequest(this.Request).AsActionResult();
}

Thus, we have added the endpoints of our authorization server, realized through the action methods of
OAuth20Controller. Currently, they are secured through the Authorize attribute but they are not fully functional
because there is one more piece that is missing, which we will see in the next section.

Securing the OAuth20Controller Endpoints
We secure the MyContacts project, including the OAuth20Controller, through forms authentication. Make an entry in
the Web.config file, as shown in Listing 13-21.

Listing 13-21. Web.config with Forms Authentication Enabled

<system.web>
 <!--<authentication mode="None" />-->
 <authentication mode="Forms">
 <forms name=".MyContacts" protection="All" cookieless="UseCookies" loginUrl="Authentication" />
 </authentication>
 ...
</sytem.web>

When an action method is decorated with the Authorize attribute, a 401 – Unauthorized response gets generated.
But FormsAuthenticationModule captures this and redirects the browser to the login URL specified in the configuration
file. In this case, the login URL is specified as Authentication, which is /Authentication/Index. Listing 13-22 shows
the corresponding controller class, AuthenticationController.

Listing 13-22. AuthenticationController

public class AuthenticationController : Controller
{
 [HttpGet]
 public ActionResult Index()
 {
 return View();
 }

 [HttpPost]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

310

 public ActionResult Index(string userId, string password, string returnUrl)
 {
 bool isAuthentic = !String.IsNullOrWhiteSpace(userId) && userId.Equals(password);
  
 if(isAuthentic)
 FormsAuthentication.SetAuthCookie(userId, false);
 
 return Redirect(returnUrl ?? Url.Action("Index", "Home"));
 }
}
 

The Index action for GET just renders the view, the screen where a user can enter login credentials and click the
Sign In button. The post back is handled by the Index action with the HttpPost attribute. As with the other places,
authentication is just a check to make sure the user ID and password are the same, for the purpose of illustration. If that
condition is satisfied, a forms authentication ticket is created and written into a cookie. Listing 13-23 shows the view
corresponding to the Index action. The names of the text boxes match the parameter names of the Index action method.

Listing 13-23.  Index View

@{
 ViewBag.Title = "Sign In";
}
 
<h2>Sign In</h2>
 
@using (Html.BeginForm())
{
 <div class="editor-label">
 @Html.Label("userId")
 </div>
 <div class="editor-field">
 @Html.TextBox("userId")
 </div>
  
 <div class="editor-label">
 @Html.Label("password")
 </div>
 <div class="editor-field">
 @Html.Password("password")
 </div>
 <input type="submit" value="Sign In" />
}
 

Forms authentication thus implemented ensures that the user is authenticated as the Promotion Manager
application redirects the browser to the resource server; that is, the action methods of OAuth20Controller. The Token
action method is not explicitly protected by forms authentication. Since the exchange for the authorization code to the
token will be made by the server side of the client application, which will not share the cookie containing the ticket,
this action method cannot be protected explicitly. However, it is implicitly protected because a valid authorization
code is needed to get a token and a valid code can be obtained only by going to the forms authentication secured
endpoints.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

311

Building the Resource Server
The resource server remains the same as what we saw in Chapter 12. The access token is passed in the HTTP
authorization request header using the bearer scheme. The ClaimsPrincipal object is created based on the token
and set to Thread.CurrentPrincipal by a message handler.

The ApiController action method is decorated with the ClaimsPrincipalPermission attribute, and
authorization is based on the true or false returned by the ClaimsAuthorizationManager subclass. You can plug this
class into the claims processing pipeline by making an entry in Web.config.

To summarize, the resource server in action is exactly the same as the resource server we saw in Chapter 12, so I
do not repeat those steps here. However, in Chapter 12 the token issued was a JSON Web Token and here the access
token is created by DNOA. We need to use the ResourceServer class provided by DNOA to read the token.

The OAuthTokenHandler class that does this activity is shown in Listing 13-24. In contrast to how we used the
keys in the authorization server side (the private key of the signing certificate and the public key of the encryption
certificate), we use the public key of the signing certificate and the private key of the encryption certificate to read the
token in the resource server.

Note■■   Copy the classes ContactsController, Contact, and AuthorizationManager from Chapter 12 and modify
Web.config to plug AuthorizationManager into the pipeline. Also, add OAuthTokenHandler to the handlers collection in
WebApiConfig.cs in the App_Start folder to complete the MyContacts project.

Listing 13-24.  OAuthTokenHandler

public class OAuthTokenHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,

CancellationToken cancellationToken)
 {
 try
 {
 var headers = request.Headers;
 if (headers.Authorization != null)
 {
 if (headers.Authorization.Scheme.Equals("Bearer"))
 {
 string accessToken = request.Headers.Authorization.Parameter;
 
 ResourceServer server = new ResourceServer(
 new StandardAccessTokenAnalyzer(
 (RSACryptoServiceProvider)
 WebApiApplication.SigningCertificate
 .PublicKey.Key,
 (RSACryptoServiceProvider)
 WebApiApplication.EncryptionCertificate
 .PrivateKey
)
);
 
 OAuthPrincipal principal = server.GetPrincipal() as OAuthPrincipal;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

312

 if (principal != null && principal.Identity != null &&
principal.Identity.IsAuthenticated)

 {
 var claims = new List<Claim>();
 
 foreach (string scope in principal.Roles)
 claims.Add(new Claim(

"http://www.my-contacts.com/contacts/OAuth20/claims/scope", scope));
 
 claims.Add(new Claim(ClaimTypes.Name, principal.Identity.Name));
 
 var identity = new ClaimsIdentity(claims, "Bearer");
 
 var newPrincipal = new ClaimsPrincipal(identity);

 Thread.CurrentPrincipal = newPrincipal;

 if (HttpContext.Current != null)
 HttpContext.Current.User = newPrincipal;
 }
 }
 }
 
 var response = await base.SendAsync(request, cancellationToken);
 
 if (response.StatusCode == HttpStatusCode.Unauthorized)
 {
 response.Headers.WwwAuthenticate.Add(
 new AuthenticationHeaderValue("Bearer",
 "error=\"invalid_token\""));
 }
 
 return response;
 }
 catch (Exception)
 {
 var response = request.CreateResponse(HttpStatusCode.Unauthorized);
 
 response.Headers.WwwAuthenticate.Add(
 new AuthenticationHeaderValue("Bearer", "error=\"invalid_token\""));
 
 return response;
 }
 }
 }
 

To test the application, you can run the MyPromo project directly from Visual Studio, but change the URL in the
Internet Explorer address bar from http://localhost/Promo/ to http://www.my-promo.com/promo because this is
the callback URL we have registered with DataStore.

www.it-ebooks.info

http://www.my-contacts.com/contacts/OAuth20/claims/scope
http://localhost/Promo
http://www.my-promo.com/promo
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

313

Note■■   In the code we saw in this chapter, some of the security-related aspects such as clickjacking mitigation and
use of antiforgery tokens that are used in the DNOA samples have been removed to keep the focus on OAuth. If you plan
to build production code based on the examples from this chapter, you will need to include those protections. Please do
review the DNOA samples from https://github.com/DotNetOpenAuth/DotNetOpenAuth.

Implicit Grant
With the authorization code grant implemented using DNOA, it is quite easy now to implement an implicit grant. The
authorization and resource server pieces will remain the same. Only the client will be different. An implicit grant is
for client-side applications such as JavaScript executing within the context of a web browser. The following steps show
how to implement an implicit grant flow.

1.	 Although it is possible to use just static HTML to illustrate an implicit grant, I’ll use ASP.
NET MVC. We just need to add an additional action method to HomeController in the
MyPromo project, as shown in Listing 13-25.

Listing 13-25.  Action Method in HomeController for an Implicit Grant

public ActionResult Implicit()
{
 return View();
}
 

2.	 The Implicit() action method does nothing much, as expected. Because this is an
implicit grant, we will have all the code in JavaScript. The view corresponding to the
Implicit() action method is shown in Listing 13-26. Add the view by right-clicking the
action method in Visual Studio and selecting Add View on the shortcut menu.

Listing 13-26.  View Corresponding to the Implicit Action Method

@{
 ViewBag.Title = "Implicit Grant";
}
 
<h2>Welcome to My Promotion Manager! (Implicit Grant)</h2>
 
Click the 'Get Contacts' button to import your contacts.

 
@using (Html.BeginForm())
{
 <input type="button" id="btnGo" name="go" value="Get Contacts" style="width: 150px;

height: 100px;" />
}

<div id="result" style="display:none">
 <table id="contacts">
 <tr>
 <th></th>

www.it-ebooks.info

https://github.com/DotNetOpenAuth/DotNetOpenAuth
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

314

 <th>Name</th>
 <th>Email</th>
 </tr>
 </table>

 <input type="button" value="Spam them" />
</div>
 
@section scripts{
 <script src="@Url.Content("~/Scripts/implicitgrant.js")" type="text/javascript"></script>
}
 

3.	 The view generates the HTML to show a big Go button, like the home page of the My
Promo application we saw earlier. All the action happens in implicitgrant.js, shown in
Listing 13-27. Add this file to the Scripts folder. When the Go button is clicked, the
getContacts() function is called. This method formats a URL corresponding to the
authorization endpoint we have been using in this chapter. It passes the client ID, a hard-
coded scope of ‘Read.Contacts’, and the redirect URI and response_type of token in the
query string. For the authorization code grant, we used response_type of code. Finally, it
sets the document.location to the URL it has just formatted.

Listing 13-27.  Implictgrant.js

$(document).ready(function () {
 $('#btnGo').click(getContacts);
 
 var hashIndex = document.location.href.indexOf('#');
 if (hashIndex > 0) {
 // rest of the code goes here
 }
});
 
function getContacts(evt) {
 var url = 'http://www.my-contacts.com/contacts/OAuth20';
 url = url + '?client_id=0123456789';
 url = url + '&scope=Read.Contacts'; // hard-coded scope for illustration only
 url = url + '&redirect_uri=' + encodeURIComponent('http://www.my-promo.com/promo');
 url = url + ='&response_type=token';
 
 document.location = url;
};
 

4.	 At this point, the user is taken to the sign-in page and subsequently the page where the
user consents to share the contacts. From an end-user perspective, the screen flow will be
exactly the same as the authorization code grant flow. However, after the user consents to
share the data, the authorization endpoint does not send the authorization code; instead,
it sends the token itself in the redirect URI fragment.

www.it-ebooks.info

http://www.my-contacts.com/contacts/OAuth20
http://www.my-promo.com/promo
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

315

5.	 The redirect URI is http://www.my-promo.com/promo, which is /Home/Index. However,
our action method is Implicit. Just to keep things simple, we can tweak the RouteConfig.
cs file in the App_Start folder to make the action method Implicit the default action
method so that http://www.my-promo.com/promo corresponds to the /Home/Implicit
action method. The correct way to do this is to change the server code to accommodate
the new redirect URI, but that will be a bigger change that will take the focus away from the
implicit grant flow. Hence, I’m opting to tweak RouteConfig.cs, as shown in Listing 13-28.

Listing 13-28.  RouteConfig.cs

public class RouteConfig
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 
 // Change default action of "Index" to "Implicit" to test implicit grant flow
 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 �defaults: new { controller = "Home", action = "Implicit",

id = UrlParameter.Optional }
);
 }
}
 

6.	 As a result of this change, after the user clicks the button to consent to share the contacts,
the /Home/Implicit action method is invoked and the corresponding view is rendered. As
the browser renders the HTML, script from the file (implicitgrant.js) starts to execute
(see Listing 13-29). First, we look for a hash in the URI and extract out the fragment, which
happens to contain key value pairs. The key we are interested in is ‘access_token’, and the
corresponding value is the access token.

Listing 13-29.  Retrieving an Access Token

var fragment = document.location.href.substring(hashIndex + 1);
var accessToken = null;
 
var keyValuePairs = fragment.split('&');
for (var i = 0; i < keyValuePairs.length; i++) {
 var keyValue = keyValuePairs[i].split('=');
 var key = decodeURIComponent(keyValue[0]);
 if (key == 'access_token') {
 var value keyValue[1];
 accessToken = decodeURIComponent(value);
 break;
 }
};
 

www.it-ebooks.info

http://www.my-promo.com/promo
http://www.my-promo.com/promo
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

316

7.	 At this point, the access token is visible in the address bar of the browser, which means
the end user as well as the script code have access to the token. Contrasting this to the
authorization code grant flow, only the authorization code is visible in the address bar
and the server-side code ultimately exchanges it for a token without the user’s knowledge.
Once the token is extracted out of the URL fragment, we can just stuff the token in the
authorization header using the bearer scheme and make the web API call from JavaScript.
When the Web API JSON response is received, we use JQuery to build the HTML table,
displaying the contacts. We use JQuery to call the My Contacts web API from the My Promo
application. Clearly, this is a violation of the same origin policy and browsers will not tolerate
it. To get around this, we have to use CORS. I’m using $.support.cors = true; to bypass
the same origin check altogether for Internet Explorer, which is not good from a security
standpoint. When you test this flow by running the application, Internet Explorer will
warn you and ask for a confirmation to continue. I’m taking this shortcut for the purpose
of brevity. The shortcut, however, will not work with other browsers such as Firefox.
Production-strength code will use CORS and send the Access-Control-Allow-Origin
response header that we saw in Chapter 4. See Listing 13-30.

Listing 13-30.  Making the API Call

if (accessToken) {
 $.support.cors = true; // Allows cross-domain requests in case of Internet Explorer
 
 $.ajax({
 type: 'GET',
 url: 'http://www.my-contacts.com/contacts/api/contacts',
 dataType: 'json',
 contentType: 'application/json; charset=utf-8',
 headers: { 'Authorization=': ='Bearer ' + accessToken },
 success: function (data) {
 $('#result').show();
 $.each(data, function (i, contact) {
 $('#contacts').append($('<tr>')
 .append($('<td>')
 .append($('<input>')
 .attr('type', 'checkbox')
)
)
 .append($('<td>')
 .text(contact.Name)
)
 .append($('<td>')
 .text(contact.Email)
)
);
 });
 }
 });
}
 

www.it-ebooks.info

http://www.my-contacts.com/contacts/api/contacts
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

317

8.	 One last thing remains. We have to make a minor modification to the Index view of
OAuth20Controller to get this thing working. When we were building the authorization
code grant, we hard-coded the value of code as the response_type in Listing 13-18. To
make the same authorization endpoint work, we need to make a change, as shown in bold
type in Listing 13-31, to choose the right response_type at runtime.

Listing 13-31.  Change to the OAuth20/Index View

@model MyContacts.Models.AuthorizationRequest
 
@{
 ViewBag.Title = "Sharing";
}
 
<h2>Would you like to share the MyContacts application data with @Model.ClientApp?</h2>
<div>
 To be Shared:
 @String.Join(" ", Model.Scope.ToArray())
</div>
 
@{
 bool isImplictGrant = Model.Request.ResponseType ==
 DotNetOpenAuth.OAuth2.Messages
 .EndUserAuthorizationResponseType
 .AccessToken;
 
 string responseType = isImplictGrant ? "token" : "code";
}
 
@using (Html.BeginForm())
{
 @Html.Hidden("client_id", Model.Request.ClientIdentifier)
 @Html.Hidden("redirect_uri", Model.Request.Callback)
 @Html.Hidden("state", Model.Request.ClientState)
 @Html.Hidden("scope", DotNetOpenAuth.OAuth2.OAuthUtilities.JoinScopes

(Model.Request.Scope))
 @Html.Hidden("response_type", responseType)

 <input type="submit" name="userApproval" value="Yes"/>
}
 
Go back to Promotion Manager
 

To test this flow, navigate to http://www.my-promo.com/promo. Because we have the Implicit action method as
the default method of HomeController, you will be shown the screen corresponding to the Implicit action. It is very
similar to the /Home/Index screen. When you click the big Go button it triggers the implicit grant flow. Figure 13-7
shows the new screen displaying the contact information after the button click.

www.it-ebooks.info

http://www.my-promo.com/promo
http://www.my-promo.com/promo
http://www.it-ebooks.info/

Chapter 13 ■ OAuth 2.0 Using DotNetOpenAuth

318

Summary
In this chapter, we implemented the same authorization code grant flow that we implemented in Chapter 12, but in
this chapter we used DotNetOpenAuth, an open source .NET Framework library. Instead of having to work at the
lower level by making HTTP calls, DNOA provides a nice API for us to work with and achieve the same flow in a more
robust way. We used the following major classes provided by DNOA:

1.	 The AuthorizationServer class in our authorization server endpoint OAuth20Controller
to manage and respond to authorization code and token requests.

2.	 The ResourceServer class in the message handler OAuthTokenHandler to read the
access token.

3.	 The WebServerClient class from the HomeController of the client application to issue
requests and get the token using the OAuth 2.0 authorization code grant flow.

Figure 13-7.  Screen for the implicit grant flow

www.it-ebooks.info

http://www.it-ebooks.info/

319

Chapter 14

Two-Factor Authentication

A system identifies a user through a user identifier, commonly abbreviated to user ID. The process by which a system
confirms that a user really is who the user claims to be is called authentication. We saw in Chapter 5 that there are three
types of credentials through which a user can be authenticated: knowledge factor (what a user knows), ownership
factor (what a user owns), and inherence factor (what a user is).

When you have an authentication mechanism that leverages a combination of two of these factors, it is called
two-factor authentication (TFA, T-FA, or 2FA). A real-life example for TFA is an automated teller machine (ATM).
Before you can transact with an ATM, you need to authenticate by providing your debit card as well as your PIN. The
debit card is something you own (ownership factor) and the PIN is something you know (knowledge factor). You are
required to use a valid debit card and the corresponding PIN to transact. Because this authentication process is based
on two factors, it is a TFA. Another example of TFA is a corporate network that requires the use of a hardware token or
USB dongle along with a user ID and password combination.

It goes without saying that from a security standpoint TFA is more robust than single-factor authentication.
In this chapter, I show you how to secure ASP.NET Web API by implementing TFA.

Two Ways to Implement TFA
In Chapter 2, we looked at the stateless constraint, which is one of the constraints a service must satisfy to be called
a RESTful service. The concept of a server-side session does not exist in the stateless world that ASP.NET Web API
belongs to. Unlike a typical UI-based application where authentication happens only once at the time a user starts
using the application, authentication typically happens in every service call for RESTful services. This is a key
consideration for designing the authentication for RESTful services in general.

Using the authentication code generated by a token such as RSA SecurID® is very common in TFA
implementations. An RSA token (not to be confused with a security token that is a container of claims that we saw
in Chapter 5) generates a code that changes after a fixed duration, usually a minute. Every minute a new code is
generated, and the user must enter the code that the token shows when the application prompts for the code. If the
user enters the correct code, it proves to the application that the user owns the token. The knowledge factor in these
implementations is typically the password that needs to be entered in addition to the RSA code.

In the case of ASP.NET Web API-powered RESTful services, it is not practical to implement TFA with a credential
that changes constantly over time, such as that of codes generated by a token. It is feasible for a user to refer to the
token and enter the generated code at the time of login in the case of a UI-based application, but it is not practical
for the same user to enter the token-generated code with every single call to the web API. Hence, you will not be able
to employ time-sensitive credentials to implement TFA with ASP.NET Web API for all API calls. You can use only
credentials that do not change with time to implement TFA for all calls.

However, it is possible to leverage the token-generated authentication code to implement two-factor security for
a few selective, occasional but important calls. Normally, the application works with one factor, say a knowledge factor
such as password, for authenticating the service calls. When a user makes a request to perform a sensitive action,
the web API elevates the security need to two-factor security and demands the authentication code generated by the
token as the ownership factor in addition to the base knowledge factor of the user ID and password.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

320

Let’s take the example of a banking application. When you try to do something important such as adding a new
payee for the funds transfer, the corresponding API call can demand an additional ownership factor while accepting
a single factor for the other typical requests. Adding a payee is always important because a malicious user with your
credentials can add himself as a payee and drain your account. Hence TFA always make sense for this type of request.

In some other cases, TFA will be required on a need basis even for selective actions, depending on the input or
some other parameter. An example for such a case is a funds transfer. If you transfer $50, you will not want to reach
out to the token to get the authentication code to complete the transfer. Two-factor security for that use case becomes
an irritant. However, if you transfer $50,000, you no doubt will want the extra protection TFA offers.

Considering the preceding points related to implementing TFA with ASP.NET Web API, I classify the TFA
techniques I cover in this chapter into the following two categories.

1.	 Blanket TFA: All the ASP.NET Web API calls need TFA. Because it is not feasible for an end
user to supply the credentials for every call, the client application must get the credentials
once and reuse the same for all subsequent calls. The credentials that do not change with
time are critical for the implementation of this type of TFA. By combining the authentication
factors I covered in the earlier chapters on knowledge-based and ownership-based security,
I illustrate the implementation of this type of TFA. For the example implementation, I take
the knowledge factor of the password presented to ASP.NET Web API in the HTTP basic
authentication scheme and the ownership factor of the X.509 client certificate.

2.	 Per-request TFA: ASP.NET Web API normally operates with authentication based on one
factor, the knowledge factor of a password. For a few important API calls, ASP.NET Web API
elevates the security to two-factor security and demands an additional ownership factor
to successfully authenticate and service the request. I use an application called Google
Authenticator to implement this type of TFA. Google Authenticator is a mobile-based
application designed to work as a software token, generating authentication codes for
TFA. The client application must be programmed to interpret the response from the web
API and demand the additional credential for certain operations. In this type of TFA, the
symmetric key entered into Google Authenticator at the time an application is registered
in it is the ownership factor (not the mobile phone). The per-request TFA can further be
classified into two types:

a.	 Constant TFA, where a specific action method of the ApiController always needs
TFA.

b.	 On-demand TFA, where a specific action method of the ApiController needs TFA
on a need basis, based on the request or some other parameter.

Implementing Blanket TFA with ASP.NET Web API
To implement TFA for all API calls to ASP.NET Web API, I use the knowledge factor of a password in an HTTP basic
authentication scheme and the ownership factor of an X.509 client certificate. Both these credentials do not change
with time, and a client application can get the credentials from an end user once and use the same credentials
to make the subsequent API calls for a reasonable duration of time. There is one more reason for my choice of
combining basic authentication and a client certificate. They both need HTTPS and hence are good candidates to be
selected as the individual factors for TFA.

In Chapter 9, I covered the steps you will need to perform to set up HTTPS and generate and use a client X.509
certificate as a credential. I don’t repeat those steps here. I show only the message handler that can be used to implement
the TFA logic. The logic is basically a combination of what we saw with X.509 client certificates in Chapter 9 and basic
authentication in Chapter 8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

321

Create a new class for the message handler and remember to plug in the handler into the handlers list by making
an entry in WebApiConfig.cs under the App_Start folder. Listing 14-1 shows TwoFactorAuthenticationHandler,
which is a message handler that can be plugged into the ASP.NET Web API pipeline to perform TFA of every request
coming in. The message handler first pulls the client certificate off the request using the GetClientCertificate
extension method defined in the System.Net.Http namespace for HttpRequestMessage. The X509Chain class is used to
validate the certificate by building the chain. I ignore the revocation list but in production, that line must be commented out.
I also make sure the issuer of the client certificate is CN=WebApiCA.

Listing 14-1.  TwoFactorAuthenticationHandler

 public class TwoFactorAuthenticationHandler : DelegatingHandler
{
 private const string SCHEME = "Basic";
 
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 X509Certificate2 cert = request.GetClientCertificate();
 
 if (cert != null)
 {
 X509Chain chain = new X509Chain();
 chain.ChainPolicy.RevocationMode =
 X509RevocationMode.NoCheck; // Not production strength
 
 if (chain.Build(cert) && cert.Issuer.Equals("CN=WebApiCA"))
 {
 var headers = request.Headers;
 
 if (headers.Authorization != null && SCHEME.Equals(headers.Authorization.Scheme))
 {
 Encoding encoding = Encoding.GetEncoding("iso-8859-1");
 
 string credentials = encoding.GetString(
 Convert.FromBase64String(
 headers.Authorization.Parameter));
 string[] parts = credentials.Split(':');
 string userId = parts[0].Trim();
 string password = parts[1].Trim();
 
 string subjectName = cert.Subject.Substring(3); // ignoring CN=
 
 // Perform the validation of user ID and password here
 �// For illustration purposes, the factor is considered valid,

// if user ID and password are the same

 bool areTwoFactorsValid = !String.IsNullOrWhiteSpace(userId) &&
 userId.Equals(password) &&
 userId.Equals(subjectName);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

322

 if (areTwoFactorsValid)
 {
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, userId)
 };
 
 var principal = new ClaimsPrincipal(new[] { new ClaimsIdentity(claims, “2FA”) });

 Thread.CurrentPrincipal = principal;

 if (HttpContext.Current != null)
 HttpContext.Current.User = principal;
 }
 }
 }
 }
 
 var response = await base.SendAsync(request, cancellationToken);
 
 if (response.StatusCode == HttpStatusCode.Unauthorized)
 {
 response.Headers.WwwAuthenticate.Add(
 new AuthenticationHeaderValue(SCHEME));
 }
 
 return response;
 }
}
 

For the knowledge factor, the validation is simple. Just pull the user ID and password off the authorization
request header and validate them. In the preceding example, I check for the user ID and password to be equal for the
knowledge factor to be considered authentic. In real production systems, this means validating the credentials against
a membership store such as a database.

If both factors are valid and the certificate subject name is the same as the user ID coming in the authorization
header, an authenticated identity is established.

To test the preceding TFA, we don’t need a special test harness because we are working within the boundaries
of the mechanisms defined in the HTTP specification. We can use a browser like Internet Explorer to issue requests
directly to the web API and exercise the 2FA-related code. Internet Explorer knows how to send the client certificate as
long as the client certificate is installed and ready for use, as shown in Chapter 9.

When sending back the 401 – Unauthorized response, we send the WWW-Authenticate header with the basic scheme.
Because of this, Internet Explorer knows that it has to pop up a window to gather the user ID and password from the user
and package the same in the HTTP Authorization header in the basic scheme before making the subsequent request.

Google Authenticator
To implement per-request TFA, you can use the preceding combination of HTTP basic authentication and an X.509
client certificate. However, I chose to implement per-request TFA using Google Authenticator. Google Authenticator is
a mobile-based application developed by Google that is meant to work as a soft token to generate authentication codes
for the implementation of TFA for Google services. It generates a six-digit number that users must provide in addition to
their username and password to log in to Google services. The validity of the six-digit number lasts only 30 seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

323

After that, a new number is generated and displayed. It is not feasible to use such a time-sensitive credential as a second
factor for implementing TFA with ASP.NET Web API for all the calls on a blanket basis. Tokens are great candidates for
per-request TFA. For this reason I choose to use a token-based mechanism for implementing the per-request TFA.

I chose Google Authenticator as the token for two main reasons:

1.	 Google Authenticator is a soft token. It can be installed on a mobile phone, which most
of us own and carry around nowadays. There is no dongle to carry around with a mobile
phone acting as the token. Google Authenticator generates the authentication code on the
mobile device without depending on anything external such as an Internet connection.

2.	 Google Authenticator uses an HMAC-based One-Time Password (HOTP) algorithm
specified in RFC 4226 and a Time-based One-Time Password (TOTP) algorithm specified
in RFC 6238. The algorithms Google Authenticator implements are not proprietary. If you
prefer implementing them yourself without a dependency on Google Authenticator, it is
quite easy to do so.

Google offers Authenticator implementations for iOS, BlackBerry, and Android. Google Authenticator can
be used by any application to implement two-factor security, on top of the traditional user ID and password
authentication, which is a knowledge-factor authentication.

Google Authenticator runs in a mobile phone and a mobile phone is something you own. By running Google
Authenticator on your mobile phone and entering the code it generates, you are proving ownership. As we will see
in the following sections, the ownership you are proving is not that of your mobile phone, but a preshared secret
between you and the application. The secret sauce is the preshared key (PSK) that we examined in Chapter 9. Google
Authenticator is available on Google Code at the following URL: https://code.google.com/p/google-authenticator.

How Does Google Authenticator Work from a User Perspective?
I’ll show you how Google Authenticator fits into the TFA scheme of things from the perspective of an end user named
Alice. Alice uses the client application hosted at www.company.com (a fictitious name I use here and not to be confused
with the real site with this name) that uses our ASP.NET Web API. The following are the steps that Alice performs.

1.	 Alice registers with the client application www.company.com. The user profile gets created
with the user ID of alice.work@company.com and a password for Alice to use the client
application.

2.	 As part of the registration process, the client application generates a key, say
WXBJY3DPEZPK3ESH, and displays it to the user on the screen either as the key itself or as
a QR code in the form of an image that Alice can scan instead of manually entering the key.

3.	 The client application shares the generated key with ASP.NET Web API through an
out-of-band process, informing the web API that this key is for the user Alice. If the client
application is the underlying application, the functionality of which is exposed through
the web API, the web API itself can have direct access to the key in Alice’s user profile,
obviating the need for any key-sharing process.

4.	 Alice adds the account created to Google Authenticator running on her mobile phone. See
Figure 14-1 for the screenshots. She provides the account name of alice.work@company.com
and manually enters the key generated in the preceding step, choosing Time based for the
type of key. She clicks the Save button to save the account entry.

www.it-ebooks.info

https://code.google.com/p/google-authenticator
http://www.company.com/
http://www.company.com/
alice.work@company.com
http://mailto:alice.work@company.com/
http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

324

5.	 Although the key is the most important aspect with Google Authenticator, an account
name is also there because it is easier to remember and human friendly. For example,
Alice registers the cryptic code generated by the client application against her user
account of alice.work@company.com in Google Authenticator. From that point onward,
she doesn’t need to worry about the key.

6.	 Alice starts using the client application using the credentials she got from the registration
process (first step). The client application keeps calling ASP.NET Web API, passing a
knowledge-based credential of a password with every call. This password can be the same
as the one Alice uses with the client application or it can be different. For our purposes,
that detail is not important.

7.	 Alice comes to a screen in the client application where she needs to perform a sensitive
operation. The corresponding web API call that the client application invokes requires an
additional ownership credential to authenticate before moving ahead. ASP.NET Web API
returns an error code to the client application indicating the same.

8.	 The client application asks Alice to enter the code generated by Google Authenticator.

9.	 Alice opens Google Authenticator and enters the six-digit code it shows at that instant
against alice.work@company.com. Although the underlying ownership factor is the PSK,
Alice does need to have her mobile phone with her to see the code and enter it in the
application. However, the user-friendly aspect of this TFA mechanism is that Alice no
longer needs to retrieve the cryptic key from somewhere and enter it, but only needs to
enter a comparatively smaller, simpler six-digit code of 838610, as shown in Figure 14-2.

Figure 14-1.  Adding an account with Google Authenticator

www.it-ebooks.info

http://mailto:alice.work@company.com/
http://mailto:alice.work@company.com/
http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

325

10.	 The client application immediately sends this code to ASP.NET Web API as the additional
ownership credential.

11.	 ASP.NET Web API authenticates this new credential and, if authentic, proceeds with
servicing the request to perform the sensitive action.

The last step is the most important step from your perspective (i.e., the perspective of a developer). The current code
of 838610 is valid for maybe another 10 seconds, and a new code that is completely unrelated to that code will appear
in Google Authenticator. After 30 seconds, another new code will be generated, and so on. When the client application
asks for this code, Alice immediately looks up the code in the Google Authenticator application on her mobile phone and
enters it in the application to complete the transaction that requires additional credentials. How is it possible for ASP.NET
Web API to know this rapidly changing code to validate if Alice has correctly entered the code? To get an answer to this
question, you need to pop the shiny hood of Google Authenticator and take a look at what goes on inside.

Note■■  U sing Google Authenticator does not mean the data associated with it, such as your account user ID or the
secret key, will go through Google servers. What gets passed between you and “your” server, not the Google server, is
only that six-digit code.

Under the Hood of Google Authenticator
Google Authenticator has two modes of working: counter based and time based. It uses the HOTP algorithm specified
in RFC 4226 and the TOTP algorithm specified in RFC 6238, respectively, to generate the code. In this chapter, I use
only the time-based mode because it is the most convenient. The downside is that, technically, the time in your
mobile phone where Google Authenticator runs and the time in the server that runs ASP.NET Web API must be in
sync to a reasonable extent. Because all time calculations are based on UTC, you don’t need to worry about the time
zone a server is located in compared to the time zone the user is in, such as a time zone with daylight savings time.

Figure 14-2.  Google Authenticator code

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

326

The HOTP algorithm generates a one-time password based on HMAC (SHA-1). The output of HMAC-SHA-1 is
160 bits. It is not practical for any human being to enter this data into a screen not only because it is an onerous task,
but also because it is extremely error prone to manually enter such data.

HOTP generates a number from this hash that can be entered easily, such as a six-digit number, in place of the
long cryptic value. If C is a counter value (which is just a number) and K is the secret key, an HOTP algorithm can be
represented as HOTP value = Truncate(HMAC-SHA-1(K,C)) mod 1000000. The magical number of a million is 10 raised
to the power 6, where 6 is the number of digits we would like to have present in our HOTP code.

TOTP builds on the HOTP algorithm. The inputs to the HOTP algorithm are the counter value and the secret key.
Assuming the counter remains the same, the HOTP code generated for a secret remains the same regardless of the
passage of time. TOTP introduces a time-based moving factor into the mix. If we somehow derive a number from the
current date and time and use it as the counter to create the HOTP code, it will start to vary continuously with time.

As you start thinking about deriving a number based on the date and time, one thing that should immediately
spring to mind, based on the earlier chapters, is the mechanism we have been using all along with the tokens to
denote the expiry, which is computing the seconds elapsed since midnight of January 01, 1970 UTC.

If we plug that number in, the HOTP generated will differ every second. It will not be very useful in that form
because it changes very rapidly. If we instead generate the number corresponding to 00 second of the current minute
and let it remain constant for the next 30 seconds, it becomes usable. Even a very slow user can look at the six-digit
code and enter it in a screen within this time period.

Suppose the current time is 08:37:00 (hours:minutes:seconds). At that precise second of 00, we calculate the
seconds elapsed since epoch start and plug that into the HOTP to get the code. The code thus calculated remains valid
until 8:37:29. We calculate the code again at 08:37:30, which remains valid until 08:38:00, and so on. In other words,
the TOTP code gets refreshed every 30 seconds.

Now that we’ve had a brief primer on HOTP and TOTP, let’s see how Google Authenticator generates the
six-digit code and how ASP.NET Web API, or any service for that matter, validates the code on receiving the same as
the additional ownership credential. The following steps show how Google Authenticator generates the code.

1.	 As we saw in the preceding section, the most important input to Google Authenticator is
the key. It is an 80-bit key. The user enters the key in base32-encoded format. The first step
is to decode it. I cover the details of this base32 encoding in a later section.

2.	 Google Authenticator gets the current date and time from the mobile phone where it runs.
It rounds down the time to the previously elapsed 00 second or 30 seconds of the current
minute, and for that time it calculates the corresponding UNIX time. For example, if the
current time is 08:00:07, it takes the time as 08:00:00. If the time is 08:00:31, it takes the
time as 08:00:30.

3.	 Google Authenticator creates an HMAC of the UNIX time through the SHA-1 algorithm
using the 80-bit key.

4.	 Google Authenticator truncates the hash thus generated and does a mod 10 power six
(which is one million). It then pads 0 to the left of the number thus generated to make it six
digits. That is the code shown by Google Authenticator.

When ASP.NET Web API receives this code, it basically repeats these steps. Because it knows the user ID from the
first factor of user ID and password, it can fetch the corresponding shared key and precisely perform the preceding
steps. If the code thus generated matches the code sent in by the client application, ASP.NET Web API considers the
ownership-based credential to be authentic as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

327

Note■■  T he ownership factor is the 80-bit key. Of course, you can register the same account and key combination on
multiple phones. It will still work because the secret sauce is the key and not the mobile phone. Google Authenticator does
two things to make the key human-friendly. First, it stores the key on the mobile phone that a user carries, and second,
it uses the TOTP algorithm to reduce the big cryptic key to a six-digit code that can be easily read from the mobile phone
and entered into any application when the application asks for it.

Listing 14-2 shows the pseudo-code used by Google Authenticator to generate the six-digit code.

Listing 14-2.  Google Authenticator Code Generation

 function GenerateCode(string secret) // secret coming in is base32 encoded string
 key = base32decode(secret)
 message = current Unix time ÷ 30
 hash = HMAC-SHA1(key, message)
 offset = last nibble of hash
 truncatedHash = hash[offset..offset+4] //4 bytes starting at the offset
 Set the first bit of truncatedHash to zero //remove the most significant bit
 code = truncatedHash mod 1000000
 pad code with 0 until length of code is 6
 return code 

Base32 Encoding and Decoding
Before we start implementing the pseudo-code in Listing 14-2 in C#, we have to understand base32 encoding as well
as how it is used by Google. Base32 encoding is one of the encoding schemes described in RFC 4648, “The Base16,
Base32, and Base64 Data Encodings.” Base 32 encoding uses a restricted set of symbols that can be conveniently used
by humans. The alphabet for base32 was selected to avoid similar-looking symbols. For example, the numbers 1, 8,
and 0 are not included because they can be confused with the letters I, B, and O. So, it basically uses the 26 English
letters A through Z and the numbers 2 through 7. Table 14-1 shows the 32 alphabets of base32.

Table 14-1.  Base32 Alphabet

Value Symbol Value Symbol Value Symbol Value Symbol

0 A 9 J 18 S 27 3

1 B 10 K 19 T 28 4

2 C 11 L 20 U 29 5

3 D 12 M 21 V 30 6

4 E 13 N 22 W 31 7

5 F 14 O 23 X

6 G 15 P 24 Y

7 H 16 Q 25 Z

8 I 17 R 26 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

328

Google Authenticator uses base32-encoding to help assist users in the manual entry of the key during the
registration process. A user can enter the individual characters of the key without any confusion, such as entering 1
when they must enter I or 0 when they must enter O, and so on.

Google uses an 80-bit key so that the resultant base32-encoded string is 16 characters long: 5 bits are grouped
and mapped to an alphabet. The client application must generate the 80-bit key and base32 encode it before sharing
it with the user to be added to Google Authenticator. However, there are no Convert.ToBase32 or Convert.FromBase32
functions in the .NET Framework. So we have to write it, but it is easy.

To generate a random 10 bytes (80 bits), use RNGCryptoServiceProvider as we have been using in other chapters
in this book. See Listing 14-3.

Listing 14-3.  Key Generation and Base32 Encoding

 byte[] key = new byte[10]; // 80 bits
 
using (var rngProvider = new RNGCryptoServiceProvider())
{
 rngProvider.GetBytes(key);
}
 

The following steps show how to base32 encode the byte array we generated in Listing 14-3.

1.	 Take an individual byte from the byte array and convert it into the bit form.

2.	 Ensure there are 8 bits by padding with leading 0 bits.

3.	 Perform the previous two steps for the other bytes in the byte array. Now you have 80 bits.

4.	 Split them into 16 groups of 5 bits each. The biggest number in the decimal system that 5
bits can represent is 11111, which is 31. Hence, this encoding is base32.

5.	 Refer to Table 14-1 to get the corresponding base32 alphabet for each of these 16 groups.
Now you get the 16 character string, which is the base32-encoded representation of the 10
bytes (or 80 bits) we generated.

Figure 14-3 illustrates the base32-encoding process for an example byte array: byte[] { 72, 101, 108, 108,
111, 33, 222, 173, 190, 239 }.

Figure 14-3.  Base32 encoding

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ two-FaCtor authentiCation

329

We will write an extension method on byte[] to implement the base32-encoding logic. See Listing 14-4.

Listing 14-4. ToBase32String Extension Method

public static class StringHelper
{
 private static string alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567";

 public static string ToBase32String(this byte[] secret)
 {
 var bits = secret.Select(b => Convert.ToString(b, 2)
 .PadLeft(8, ‘0’))
 .Aggregate((a, b) => a + b);

 return Enumerable.Range(0, bits.Length / 5)
 .Select(i => alphabet.Substring(
 Convert.ToInt32(
 bits.Substring(i * 5, 5), 2), 1))
 .Aggregate((a, b) => a + b);
 }
}

Now, let’s move to the decoding part. As you saw in Listing 14-2, Google Authenticator first decodes the
base32-encoded string registered with it and uses it for code generation. Similarly, if our ASP.NET Web API has to
generate the TOTP code, we have to base32 decode the secret.

Decoding is simply the reverse of encoding. We take the first character and get the value from the map. So, if it is J
we take 9 and write the bit representation of 9, which is 1001. We then make sure this is at least 5 bits wide by prefixing
it with a zero. Now we have 01001. We do this for every other character and concatenate all the bits. Then, we break
this huge string of concatenated bits by groups of 8 (a byte) and thus we get a byte array, which is the shared key.
Because a Google-generated key is 16 characters wide, we will get 80 bits and hence ultimately a byte[10].

A picture is worth thousand words, Figure 14-4 illustrates how a base32-encoded string of JBSWY3DPEHPK3PXP
is decoded back to a byte array.

Figure 14-4. Base32 decoding

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

330

Note■■  T he encoding logic you saw in Listing 14-4 and the decoding logic you are about to see in Listing 14-5 are tailor
made for Google Authenticator. Google uses 80-bit keys, which divide exactly into 16 groups of 5 bits. Our logic will not
handle any other lengths.

Listing 14-5 shows the C# code to base32 decode, exactly along the lines of the steps just outlined. It might not be
the most efficient implementation, but the code exactly mimics the preceding steps for your easy understanding.

Listing 14-5.  Base32 Decoding

 public static byte[] ToByteArray(this string secret)
{
 var bits = secret.ToUpper().ToCharArray().Select(c =>
 Convert.ToString(alphabet.IndexOf(c), 2)
 .PadLeft(5, '0'))
 .Aggregate((a, b) => a + b);
 
 return Enumerable.Range(0, bits.Length / 8)
 .Select(i => Convert.ToByte(bits.Substring(i * 8, 8), 2))
 .ToArray();
}
 

Convert.ToString(int, 2) gives the corresponding bits in the string representation. So, Convert.ToString(9, 2)
is 1001. PadLeft adds the prefix and the LINQ Aggregate operator just concatenates the padded bit strings to a single huge
string. The next line of code breaks the huge string of bits into chunks of 8 bits each and Convert.ToByte(string, 2)
converts the bits in the form of a string into a byte. So, Convert.ToByte("01001000", 2) returns a byte of value 72.

Implementing TOTP Algorithm in a Console App
We will now implement the HOTP and TOTP algorithm as used by Google Authenticator in a console application
written in C#. The secret is 80 bits and the HOTP code generated is six digits. Listing 14-6 shows the code to generate
HOTP. Although I use TOTP in this chapter, I show you HOTP here because TOTP uses HOTP internally, as you will
see in this section. The following are the steps to generate an HOTP.

1.	 The two inputs to the HOTP generating function are the secret and a counter. The secret is
a string that is base32 encoded. The counter is just a number.

2.	 Get the bytes corresponding to the counter using BitConverter. A small wrinkle here is
that Windows uses the little endian convention in storing bytes, and we need to reverse the
byte array by calling the Reverse method to get it the way we want it.

3.	 Decode the base32-encoded secret. For this, use the extension method, which we saw
in Listing 14-5.

4.	 Create an HMAC SHA-1 of the byte array from Step 2 using the base32-decoded secret as
the key.

5.	 Truncate the hash. I use the logic taken straight out of the example from RFC 4226
Section 5.4 for this purpose. The truncated hash modulus 10 raised to the power of 6,
which is a million, is the HOTP.

6.	 As the final step, make sure the code is six digits by prefixing zeros and return it as string.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

331

Listing 14-6.  HOTP Generator

 public static string GetHotp(string base32EncodedSecret, long counter)
{
 byte[] message = BitConverter.GetBytes(counter)
 .Reverse().ToArray(); // Assuming Intel machine (little endian)
 
 byte[] secret = base32EncodedSecret.ToByteArray();
 
 HMACSHA1 hmac = new HMACSHA1(secret, true);
 
 byte[] hash = hmac.ComputeHash(message);
 
 int offset = hash[hash.Length - 1] & 0xf;
 int truncatedHash = ((hash[offset] & 0x7f) << 24) |
 ((hash[offset + 1] & 0xff) << 16) |
 ((hash[offset + 2] & 0xff) << 8) |
 (hash[offset + 3] & 0xff);
 
 int hotp = truncatedHash % 1000000; // 6-digit code and hence 10 power 6, that is a million
 
 return hotp.ToString().PadLeft(6, '0');
}
 

We now implement the TOTP algorithm building on top of the HOTP implementation. Listing 14-7 shows the
code. The TOTP generator uses the HOTP generator to generate the code. There is no counter parameter here because
it is deduced from the current date and time. The number of seconds elapsed since midnight on January 1, 1970 UTC
is divided by 30 and rounded down to the nearest whole number. This number is used as the input to the HOTP logic,
and the resultant code is returned as TOTP.

Listing 14-7.  TOTP Generator

 public static string GetTotp(string base32EncodedSecret)
{
 DateTime epochStart = new DateTime(1970, 01, 01, 0, 0, 0, 0, DateTimeKind.Utc);
  
 long counter = (long)Math.Floor((DateTime.UtcNow - epochStart).TotalSeconds / 30);
 
 return GetHotp(base32EncodedSecret, counter);
}
 

Finally, Listing 14-8 shows the code for the Main method of the console application that uses our TOTP generator
to generate codes. I print the TOTP code every three seconds.

Listing 14-8.  Test Program

 
static void Main(string[] args)
{
 string secret = "JBSWY3DPEHPK3PXP";
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

332

 while (true)
 {
 Console.WriteLine("{0} {1}", DateTime.Now, GetTotp(secret));
 Thread.Sleep(1000 * 3);
 }
}
 

The output of the console application is shown in Figure 14-5. As you can see, the generated TOTP code remains
valid for 30 seconds. When it is 0 second or 30 seconds of the minute, a new code is generated.

Figure 14-5.  Output

At this point, our logic is in line with Google Authenticator. If you have a mobile phone running iOS, a BlackBerry,
or Android, you can get the Google Authenticator application and add an account using some mail ID and the secret
key of JBSWY3DPEHPK3PXP.

Once an account is added with this secret key, the code generated by Google Authenticator for that account and
our little console application will be exactly the same at any given instant. As Google Authenticator shows a new code
at the change of the second to 0 or 30, our console application also will print the same code as if it is magic!

What you are seeing is the fundamental idea behind two-factor security using Google Authenticator. At any point
in time, any application implementing the TOTP algorithm and Google Authenticator application will display the
same TOTP code, as long as the same secret key is used in Google Authenticator as well as the application.

If you don’t have a compatible phone, there are several third-party implementations available, including the
one for Windows Phone. If you don’t want to use any mobile phone at all for testing, there is even an HTML 5–based
implementation available in Github. If you have the Google Chrome browser, the same HTML 5 implementation is
available as an add-on, GAuth Authenticator, in the Chrome Web Store.

See Figure 14-6 for a screenshot of the Chrome add-on showing the TOTP code. Because I have used the same
secret used by this add-on for alice@google.com, the codes generated by the add-on and the console application are
exactly the same at any given point in time.

www.it-ebooks.info

http://mailto:alice@google.com/
http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

333

Now that we have tested our TOTP generation logic and we are satisfied that it is generating the code exactly the
same as Google Authenticator, let’s move on to implementing TFA with ASP.NET Web API.

Implementing Constant Per-Request TFA
I now show you how to implement what I call constant per-request TFA, with ASP.NET Web API using TOTP codes
generated by Google Authenticator. ASP.NET Web API normally operates with authentication based on one factor,
the knowledge factor of a password sent in the HTTP authentication header basic scheme. For a few important API
calls, ASP.NET Web API elevates the security to two-factor security and demands the TOTP code as the additional
ownership factor to successfully authenticate and service the request.

The action method that handles HTTP POST in the TransfersController class is what we will try to secure using
TFA. Because we need to secure action methods selectively, I chose to subclass the Authorize filter to implement TFA.
This filter expects the TOTP code to be sent by the client application in a custom HTTP request header by the name
of X-TOTP. The knowledge factor of the password is needed for all API calls. Hence, the corresponding authentication
logic will be implemented in a message handler. The following are the steps to implement constant per-request TFA
for the HTTP POST action method of the TransfersController class.

1.	 Open Visual Studio 2012 and create a new ASP.NET MVC 4 Web Application using the Web
API template and name it GoogleAuthWebApi.

2.	 Create a folder named Infrastructure.

3.	 Create a new message handler class, as shown in Listing 14-9. This is the same as the
message handler we saw in Chapter 8 when we implemented basic authentication.

Listing 14-9.  Basic Authentication Delegating Handler

 public class BasicAuthenticationHandler : DelegatingHandler
{
 private const string SCHEME = "Basic";
 
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 
 var headers = request.Headers;
 if (headers.Authorization != null && SCHEME.Equals(headers.Authorization.Scheme))

Figure 14-6.  Google Chrome GAuth Authenticator add-on

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

334

 {
 string credentials = Encoding.UTF8.GetString(
 Convert.FromBase64String(
 headers.Authorization.Parameter));
 string[] parts = credentials.Split(':');
 string userId = parts[0].Trim();
 string password = parts[1].Trim();
 
 // TODO - Do authentication of user ID and password against your credentials store here
 if (true)
 {
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, userId)
 };
 
 var principal = new ClaimsPrincipal(new[] {new ClaimsIdentity(claims, SCHEME) });

 Thread.CurrentPrincipal = principal;

 if (HttpContext.Current != null)
 HttpContext.Current.User = principal;
 }
 }
 
 var response = await base.SendAsync(request, cancellationToken);
 
 if (response.StatusCode == HttpStatusCode.Unauthorized)
 {
 response.Headers.WwwAuthenticate.Add(
 new AuthenticationHeaderValue(SCHEME));
 }
 
 return response;
 
 }
}
 

4.	 Add the message handler to the list of message handlers by making an entry in
WebApiConfig.cs under the App_Start folder: config.MessageHandlers.Add
(new BasicAuthenticationHandler());

5.	 Add an extension method to the HttpRequestMessage class, as shown in Listing 14-10.
Create a new static class named RequestHelper in the Helpers folder. Create the folder
before creating the class. The logic is simple. If the TOTP code is present in the X-TOTP
header, the method retrieves it. It then calls a static method GetPastCurrentFutureOtp
on the Totp class that returns three TOTP codes corresponding to the last 30-second
block, the current TOTP, and the TOTP corresponding to the next 30-second block. As an
example, let’s say the time this code runs is 08:35:07 AM. The three TOTP codes returned
in the list, respectively, will be as follows.

a.	 TOTP code corresponding to the time period 08:34:30 AM–08:34:59 AM (Past).

b.	 TOTP code corresponding to the time period 08:35:00 AM–08:35:29 AM (Current).

c.	 TOTP code corresponding to the time period 08:35:30 AM–08:35:59 AM (Future).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

335

Listing 14-10.  TOTP Code Validation

 public static class RequestHelper
{
 public static bool HasValidTotp(this HttpRequestMessage request, string key)
 {
 if (request.Headers.Contains("X-TOTP"))
 {
 string totp = request.Headers.GetValues("X-TOTP").First();
 
 // We check against the past, current, and future TOTP
 if (Totp.GetPastCurrentFutureOtp(key).Any(p => p.Equals(totp)))
 return true;
 }
 
 return false;
 
 }
}
 

6.	 If the incoming TOTP matches one of the three, authentication is considered successful.
The reason for this slight complexity is to accommodate the clock skew between the server
where this code runs and the clock of the mobile phone where the user-entered TOTP
was generated by Google Authenticator. By looking at the past and the future one, we are
a little easy on the user. It does take them a little bit of time to enter the code. If they enter
the code a few seconds before expiry, by the time the request comes to ASP.NET Web API
we are probably on the next TOTP. If we reject the user entry, the user will mostly likely
not realize what happened, unless the user has knowledge of how TOTP works, network
latency, and so on. To a typical end user, it will just be a bad system. So we try to be a bit
accommodating.

7.	 In the Infrastructure folder, create another class named Totp. Listing 14-11 shows the
Totp class. Only the new method of GetPastCurrentFutureOtp is shown in the listing.
Copy and paste the method GetHotp from Listing 14-6.

Listing 14-11.  Totp Class

 public class Totp
{
 public static IList<string> GetPastCurrentFutureOtp(string base32EncodedSecret)
 {
 DateTime epochStart = new DateTime(1970, 01, 01, 0, 0, 0, 0, DateTimeKind.Utc);
 
 long counter = (long)Math.Floor((DateTime.UtcNow - epochStart).TotalSeconds / 30);
 
 var otps = new List<string>();
 otps.Add(GetHotp(base32EncodedSecret, counter - 1)); // previous OTP
 otps.Add(GetHotp(base32EncodedSecret, counter)); // current OTP
 otps.Add(GetHotp(base32EncodedSecret, counter + 1)); // next OTP
 
 return otps;
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

336

 private static string GetHotp(string base32EncodedSecret, long counter)
 {
 // Same logic we saw in Listing 14-6
 }
}
 

8.	 Copy and paste the StringHelper.cs file containing the static class StringHelper with the two
extension methods ToByteArray and ToBase32String that we saw in Listings 14-4 and 14-5.

9.	 Create the TwoFactorAttribute class in the Infrastructure folder by extending
System.Web.Http.AuthorizeAttribute, as shown in Listing 14-12. This filter is based
on the assumption that the delegating handler that runs earlier in the pipeline will have
established the authenticated identity based on the knowledge factor of the password.

a.	 Override the IsAuthorized method to pull the username from
Thread.CurrentPrincipal, which is established by the message handler.

b.	 Get the secret key for this user. This step is not implemented in listing 14-12. I just
use a hard-coded key.

c.	 Using the extension method HasValidTotp, validate the incoming TOTP and return
true if the incoming TOTP is valid. Otherwise, return false.

d.	 Returning false here would result in a response status code of 401 – Unauthorized.
Along with 401, send a reason phrase back stating that TOTP is required by
overriding the HandleUnauthorizedRequest method.

Listing 14-12.  TwoFactorAttribute

 public class TwoFactorAttribute : AuthorizeAttribute
{
 protected override bool IsAuthorized(HttpActionContext context)
 {
 IIdentity identity = Thread.CurrentPrincipal.Identity;
 if (identity.IsAuthenticated && !String.IsNullOrWhiteSpace(identity.Name))
 {
 // TODO - Using a hard-coded key for illustration
 // Get the key corresponding to identity. Name from the membership store
 string key = "JBSWY3DPEHPK3PXP";
 
 if (context.Request.HasValidTotp(key))
 {
 return true;
 }
 }
 
 return false;
 }
 
 protected override void HandleUnauthorizedRequest(HttpActionContext actionContext)
 {
 actionContext.Response = new HttpResponseMessage(HttpStatusCode.Unauthorized)
 {
 ReasonPhrase = "TOTP code required"
 };
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

337

10.	 Create a new Web API Controller with a name of TransfersController, as shown in
Listing 14-13. Apply the TwoFactor filter on the Post action method. The action filter
makes sure the request contains an X-TOTP header with a valid TOTP. If not, a
401 – Unauthorized status code is sent back. The granularity we can achieve with this filter
is the action method level, which is exactly what we need to implement per-request TFA.

Listing 14-13.  TransfersController API Controller

 [TwoFactor]
public HttpResponseMessage Post(AccountTransfer transfer)
{
 // Transfer logic goes here
}

public class AccountTransfer
{
 public decimal Amount { get; set; }
}
 

That completes our per-request TFA implementation. I used a funds transfer example because I will build on the
same example when I cover on-demand TFA in the next section. However, a better example for this constant per-request
TFA scenario is a user adding a payee that requires elevated security all the time, regardless of the input or any other
parameter. If you transfer a small amount, you will not want to reach out to your phone to complete the transfer.
Two-factor security for that use case becomes an irritant. If you transfer a bigger amount, it does make sense. We see
how we can modify our approach to meet this on-demand TFA need in the next section.

Implementing On-Demand Per-Request TFA
The fundamental idea of using Google Authenticator–based TOTP code remains the same to implement two-factor
security on demand, based on the data that is being handled. We still have the first factor as user ID and password and
use basic authentication accomplished in a message handler. That portion remains unchanged. Instead of an action
filter, we use another message handler. The following are the steps.

1.	 As we go down this path of having two handlers, you need to be aware of the fact that
the handler validating TOTP must run only after the basic authentication handler.
This is very simple to accomplish: The sequence of how we register with configuration
determines the calling sequence. We have a TotpHandler in addition to the
BasicAuthenticationHandler. These two handlers must be registered in WebApiConfig,
in the App_Start folder, as shown in Listing 14-14.

Listing 14-14.  Handler Registration

 public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

338

 config.MessageHandlers.Add(new BasicAuthenticationHandler());

 // Must be after BasicAuthenticationHandler
 config.MessageHandlers.Add(new TotpHandler());

 }
}
 

2.	 Add a new message handler to the Infrastructure folder of the project we used in the
preceding section. Give it the name TotpHandler and copy and paste the code shown in
Listing 14-15. This handler runs for all the requests. However, it does nothing if the X-TOTP
header is absent. If present, it validates the TOTP exactly how we performed the validation
in the preceding section by calling the HasValidTotp method. If TOTP is valid, add a new
custom claim of type http://badri/claims/totp and value of true to the claims-based
identity established by BasicAuthenticationHandler.

Listing 14-15.  TotpHandler

 public class TotpHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 var headers = request.Headers;
 
 IIdentity identity = Thread.CurrentPrincipal.Identity;
 if (request.Headers.Contains("X-TOTP") &&
 identity.IsAuthenticated &&
 !String.IsNullOrWhiteSpace(identity.Name))
 {
 // TODO - Using a hard-coded key for illustration
 // Get the key corresponding to identity.Name from the membership store
 string key = "JBSWY3DPEHPK3PXP";
 
 if (request.HasValidTotp(key))
 {
 ClaimsIdentity claimsIdentity = identity as ClaimsIdentity;
 
 if (identity != null)
 claimsIdentity.AddClaim(new Claim("http://badri/claims/totp", "true"));
 }
 }
 
 return await base.SendAsync(request, cancellationToken);
 }
}
 

www.it-ebooks.info

http://badri/claims/totp
http://badri/claims/totp
Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

Chapter 14 ■ two-FaCtor authentiCation

339

3. With this mechanism in place, the whole thing at this point becomes a case of
implementing claims-based authorization in ASP.NET Web API, which we did
in Chapter 5. We will subclass ClaimsAuthorizationManager and implement our
claims checking logic there. See Listing 14-16 for the subclass implementation. The
ClaimsAuthorizationManager subclass looks for a resource claim of type
http://badri/claims/TransferValue. Only when the value exceeds 50,000 does it check
for the user claim added by TotpHandler, a claim of type http://badri/claims/totp with a
value that can be parsed to a Boolean value of true. For small transfers, no checking is done.

Listing 14-16. ClaimsAuthorizationManager Subclass

public class AuthorizationManager : ClaimsAuthorizationManager
{
 public override bool CheckAccess(AuthorizationContext context)
 {
 var resource = context.Resource;
 var action = context.Action;

 string resourceName = resource.First(c => c.Type == ClaimTypes.Name).Value;
 string actionName = action.First(c => c.Type == ClaimTypes.Name).Value;

 if (resourceName == "Transfer" && actionName == "Post")
 {
 ClaimsIdentity identity = (context.Principal.Identity as ClaimsIdentity);
 if (!identity.IsAuthenticated)
 return false;

 var claims = identity.Claims;

 string claimValue = resource
 .First(c =>
 c.Type == “http://badri/claims/TransferValue”)
 .Value;
 decimal trasferValue = Decimal.Parse(claimValue);

 if (transferValue > 50000M)
 {
 if (claims.Any(c => c.Type == "http://badri/claims/totp" &&
 Boolean.Parse(c.Value)))
 return true;
 }
 else
 return true;
 }

 return false;
 }
}

www.it-ebooks.info

http://badri/claims/TransferValue
http://badri/claims/TransferValue
http://badri/claims/totp
http://badri/claims/totp
http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

340

4.	 With this, the action method in ApiController must call CheckAccess() passing in
the resource claim, which is the transfer amount. The AccountTransfer class is very
simple and has one property of Amount for the web API to bind the incoming value.
Based on the return value of the method CheckAccess, transfer processing is continued or
dropped. The action method is shown in Listing 14-17.

Listing 14-17.  Action Method

 public HttpResponseMessage Post(AccountTransfer transfer)
{
 // Based on ID, retrieve employee details and create the list of resource claims
 var transferClaims = new List<Claim>()
 {
 new Claim("http://badri/claims/TransferValue", transfer.Amount.ToString())
 };
 
 if (User.CheckAccess("Transfer", "Post", transferClaims))
 {
 //repository.MakeTransfer(transfer);
 return new HttpResponseMessage(HttpStatusCode.OK);
 }
 else
 return new HttpResponseMessage(HttpStatusCode.Unauthorized)
 {
 ReasonPhrase = “TOTP code required” };
 }
}
 

5.	 Plugging our custom implementation of ClaimsAuthorizationManager into the claims
processing pipeline and the extension method of CheckAccess method on IPrincipal
interface are all covered in Chapter 5. I don’t repeat that process here. With this
implementation, the transfers can work at normal security level for the typical smaller
amounts. Two-factor security kicks in only for the larger amounts, and the ownership
factor is authenticated, in addition to the already authenticated knowledge factor. From
the point of view of the end users, for doing large transfers they have to reach out to their
mobile phones and enter the code that Google Authenticator shows at that instant into the
application consuming our web API. The application will relay back the code to our API
when the API is invoked. This is a great thing for end users. For large transfers, there is an
additional level of protection, which kicks in only when required without annoying them.

To test the on-demand TFA, here is a simple JQuery powered UI (see Listing 14-18). Copy and paste the following
code in /Home/Index view.

Listing 14-18.  Index View

 @section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#transfer').click(function () {
 $('#result').empty();
  
 // Basic authorization hard-coded for jqhuman:jqhuman
 $.ajax({
 type: "POST",

www.it-ebooks.info

http://badri/claims/TransferValue
http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

341

 headers: {
 "X-TOTP": $("#otp").val(),
 "Authorization": "Basic anFodW1hbjpqcWh1bWFu"
 },
 url: "http://localhost:19927/api/transfers",
 data: { "Amount": "50001" },
 success: function (data) {
 $('#result').html("Transfer successful");
 },
 error: function (error) {
 alert(error);
 $('#result').val("Transfer failed " + error);
 }
 });
 });
 });
 </script>
}
<h2>Transfer amount exceeds $50,000. Enter the code from Google Authenticator</h2>
<div>
 <div>
 <input type="text" id="otp" />
 <input id="transfer" type="button" value="Transfer" />
 </div>
 <div id="result"/>
</div> 

Two-Factor Security through Mobile Phones
In this chapter, I have covered TFA implementation realized through the use of TOTP codes generated by Google
Authenticator. The ownership factor is not the mobile phone running Google Authenticator but the secret key
generated by the client application and shared with the web API as well as Google Authenticator. Because it will be
difficult for a user to enter the long and cryptic PSK, the TOTP algorithm generates a six-digit code corresponding to
the PSK, which is easier for a user to enter. Google Authenticator is just a handy means to look at the six-digit code
coming out of the TOTP algorithm, for the PSK and the 30-second interval corresponding to that point in time.

An important point to note is that Google Authenticator is not tied to a specific phone. You can install Google
Authenticator on any phone that is supported and add the account with the shared key. It will start generating the
correct TOTP. A mobile phone, therefore, is not the ownership factor.

However, it is possible to implement two-factor security using a mobile phone as the second ownership factor.
For example, if a web API can generate a small code and send it to the mobile number in the form of an SMS message,
it can expect this number to be entered to complete a transaction. This is two-factor security with the mobile phone
serving as the ownership factor.

At the time of registration, the user enters her mobile phone number into the application. Typically, the
application that supports the registration functionality collects the phone number from the user and immediately
validates that the user is in possession of a phone with that number by sending a One-Time PIN or Password (OTP) to
the mobile phone through SMS. The user has to enter the OTP to complete the registration. By entering the OTP that
the system has sent, the user is proving to the system that she is indeed the owner of the mobile phone.

In the future, for any transaction that requires elevated security, the web API can simply generate a new OTP and
send it to the already registered phone number. If the user retries the transaction by sending the OTP received in the
mobile phone and it matches with the one the web API has stored in the system, the transaction continues.

www.it-ebooks.info

http://localhost:19927/api/transfers
http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

342

In this method, TOTP is not used. The web API generates a code, usually a smaller one that is four to six digits
long, and sends that in the SMS. Before sending, the code is stored against the user in a persistent store to compare
against. The code stored will get invalidated by one or more incorrect attempts or the passage of time.

So, this SMS-based method differs from the Google Authenticator approach in two primary ways: (1) There is no
time-based logic and the code generated can be any random code, and (2) the code generated must be persisted to
validate subsequently when the code comes back in the request. But for these two fundamental differences, the rest of
the logic can remain the same.

The additional capability required from the web API point of view is sending an SMS message. Of course, there
are providers available that offer SMS capabilities to an application at a cost. From a technical point of view, SMS
capabilities are available as a REST API for our ASP.NET Web API to use and send SMS.

There are advantages and disadvantages in the mobile-phone-based two-factor security, compared to the HOTP-based
approach implemented through Google Authenticator. Unlike Google Authenticator, the user has to wait for the code to
arrive in SMS. However, the advantage with this method is that an additional application like Google Authenticator is not
needed, and the SMS can be sent to any phone, not just smart phones capable of running Google Authenticator.

Google Authenticator is not tied to a phone. A user does not have to register a phone number. It is a great thing
from the perspective of privacy. An average user who values privacy will hesitate to share his mobile number. The
common link in the case of a mobile phone/SMS-based approach is the mobile number itself, whereas with the
Google Authenticator approach it is only an 80-bit randomly generated secret key.

Summary
The process by which a system confirms that a user is really who the user claims to be is called authentication.
There are three types of credentials through which a user can be authenticated: knowledge factor (what a user
knows), ownership factor (what a user owns), and inherence factor (what a user is). When you have an authentication
mechanism that leverages a combination of two of these factors, it is called two-factor authentication.

RESTful services are stateless. Unlike a typical UI-based application where authentication happens only once
when a user starts using the application, authentication typically happens in every service call for RESTful services.
In the case of ASP.NET Web API-powered RESTful services, it is not practical to implement TFA with a credential that
changes constantly over time, such as that of codes generated by a token such as RSA SecurID®. Whereas it is feasible
for a user to refer to the token and enter the generated code at the time of login in the case of a UI-based application,
it is not practical for the same user to enter the token-generated code with every single call to the web API. Hence, you
will not be able to employ time-sensitive credentials to implement TFA with ASP.NET Web API for all API calls. You
can use only credentials that do not change with time to implement TFA for all calls.

However, it is possible to leverage the token-generated authentication code to implement two-factor security
for a few selective important calls. Normally, the application works with one factor, say a knowledge factor such as a
password, for authenticating the service calls. When a user makes a request to perform a sensitive action, the web API
elevates the security need to two-factor security and demands the authentication code generated by the token as the
ownership factor in addition to the base knowledge factor of user ID and password. Considering the preceding points
related to implementing TFA with ASP.NET Web API, I classified the TFA techniques that I covered in this chapter into
the following two categories.

1.	 Blanket TFA: All the ASP.NET Web API calls need TFA. The credentials that do not
change with time are critical for the implementation of this type of TFA. By combining
the authentication factors I covered in the earlier chapters on knowledge-based and
ownership-based security—a password using HTTP basic authentication and the X.509
client certificate, respectively—I illustrated the implementation of this type of TFA.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Two-Factor Authentication

343

2.	 Per-request TFA: ASP.NET Web API normally operates with authentication based on
one factor, the knowledge factor of a password. For a few important API calls, ASP.NET
Web API elevates the security to TFA and demands an additional ownership factor to
successfully authenticate and service the request. I used an application called Google
Authenticator to implement this type of TFA. Google Authenticator is a mobile-based
application designed to work as a software token generating authentication codes for TFA
using HOTP and TOTP algorithms. In this type of TFA, the symmetric key entered into
Google Authenticator at the time an application is registered is the ownership factor
(not the mobile phone). A per-request TFA can be further classified into two types:

a.	 Constant TFA, where a specific action method always needs TFA.

b.	 On-demand TFA, where a specific action method needs TFA on a need basis, based
on the request or some other parameters.

We finished the chapter with a quick overview of implementing two-factor security using mobile phones with a
one-time PIN or a password transmitted through an alternative means, which is SMS.

www.it-ebooks.info

http://www.it-ebooks.info/

345

Chapter 15

Security Vulnerabilities

We saw in Chapter 1 that the term information security means protecting information and information systems from
unauthorized access, use, disclosure, disruption, modification, or destruction to ensure confidentiality, integrity, and
availability. Related to this, we have seen how an application can identify and authenticate entities using the three
factors based on knowledge, ownership, and inherence to control the access of protected application resources from
unauthorized entities. Also, we examined how cryptography can help ensure the two important aspects of message
security: confidentiality through encryption and integrity through digital signing techniques. We also looked at
transport security achieved through TLS over HTTP (HTTPS).

Now that you have gained a new understanding of the security techniques I’ve covered in previous chapters,
I show you in this final chapter how you can learn from the mistakes of other organizations by becoming familiar
with the Open Web Application Security Project (OWASP) Top Ten list for 2013. At the time of the writing of this book,
the list is a release candidate. The list identifies the top ten application security vulnerabilities or risks. OWASP is a
worldwide, not-for-profit organization focused on improving the security of software. The OWASP Top Ten list aims to
raise awareness about application security by identifying some of the most critical security risks facing organizations.

RFC 4949, “Internet Security Glossary, Version 2,” defines a vulnerability as a flaw or weakness in a system’s
design, implementation, operation, or management that could be exploited to violate the system’s security policy.
If a vulnerability is exploited with no harmful result, the vulnerability is not considered to be a risk. Starting in 2010,
the OWASP Top Ten lists risks rather than vulnerabilities. However, as a developer, application designer, or application
architect, you need to be aware of all the possibilities that can leave your ASP.NET Web API vulnerable, risky or not.
I cover the OWASP risks in this chapter from the perspective of vulnerability.

Attacks are the techniques that an attacker uses to exploit the vulnerabilities in your application. In previous
chapters we have seen multiple types of attacks such as man-in-the-middle (MITM) and replay attacks. The action or
the technique employed to counter an attack is a countermeasure. A good countermeasure is typically a combination
of hardware, software, and processes. The term software here includes both the system software, such as the operating
system, and the application software, which is the code you write or the code you reuse. To drive home this point,
I cover a couple of attacks and the corresponding countermeasures in this chapter.

Finally, I briefly cover two sound practices related to securing ASP.NET Web API: logging (or auditing) and
input validation.

OWASP Application Security Risks
Following are the OWASP top ten application security risks for 2013. At the time of writing, this list is a release candidate.

1.	 Injection

2.	 Broken Authentication and Session Management

3.	 Cross-Site Scripting (XSS)

4.	 Insecure Direct Object References

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

346

5.	 Security Misconfiguration

6.	 Sensitive Data Exposure

7.	 Missing Function Level Access Control

8.	 Cross-Site Request Forgery (CSRF)

9.	 Using Known Vulnerable Components

10.	 Unvalidated Redirects and Forwards

Injection
An application is vulnerable to injection attacks if it sends untrusted data to an interpreter. There are many types of
injections: SQL, LDAP, XPATH, and so on. From the point of view of ASP.NET Web API, I cover two types of injections,
namely SQL injection and overposting.

SQL Injection
SQL injection attacks operate by manipulating the input data that is subsequently used in a SQL query as is without
sanitization in such a way that the SQL query performs a database operation not intended by the developer. Almost
all applications, whether web applications or otherwise, must use some kind of store to persist data resulting from
the interactions with the end user or other systems or as a result of the internal processing of the inputs. The most
common type of data stores are relational databases or SQL databases. The defining characteristic of a SQL database
is its support for Structured Query Language (SQL) to manage the stored data.

A SQL query consists of one or more SQL statements such as SELECT, INSERT, UPDATE, and DELETE. If a query
contains multiple statements, a semicolon (;) separator is used to separate the statements. A SQL statement consists
of language elements such as clauses, expressions, and so on.

A SELECT SQL statement is the most common, and the WHERE clause of the SELECT statement is as famous as the
SELECT statement itself. The WHERE clause gives us the ability to get precisely the data we need. In an organization
with 10,000 employees, a table storing the employee records will have as many records as the number of employees.
If I’m interested in getting the details of an employee, a simple SELECT statement such as SELECT * FROM employee
WHERE employee_id = 12345 can return the details of the employee with an identifier of 12345. The WHERE clause is
very flexible. I can query the employee table not only by the ID, but also by using any other attribute (of the field in the
world of the database), such as WHERE first_name = 'John'.

SQL statements themselves are just strings, and in a language such as C# we can declare a variable of type string
and store the SQL statement, such as string sql = "SELECT * FROM employee WHERE employee_id = 12345".
When the input data to the SELECT statement, which is the employee ID of 12345, has to change based on user input,
an easy way to frame the SELECT statement is to concatenate the ID with the skeleton SQL. So, you will start off with
string sql = "SELECT * FROM employee WHERE employee_id ={0}"; and then plug in the value, which is from the
user input using String.Format() or even just plain concatenation. This approach is the root cause for SQL injection
attacks, specifically when the user input is plugged in as is without any validation or sanitization. The input plugged in
need not be from a user input on a screen. In the case of a web API, it can be based on the value coming in the request
header, URI, query string, or the message body. Let’s take an example. Listing 15-1 shows a simple GET action method
that returns an Employee object based on the ID passed in.

Listing 15-1.  GET Action Method

public Employee Get(string id)
{
 return repository.GetEmployee(id);
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

347

The controller might be using good practices related to design such as dependency injection and repository
pattern, but the incoming ID is never validated and is simply passed into the repository method. The GetEmployee
repository method can pass the unsanitized value further down. Finally, in the data access layer (if there is one), the
ID is simply concatenated to a SQL string to form a SELECT statement and executed against the database, as shown
in Listing 15-2.

Listing 15-2.  SQL Execution

string connectionString = "Put your connection string here";
string sql = "SELECT * FROM employee WHERE employee_id = " + id; // id is straight from the URI
using (var connection = new SqlConnection(connectionString))
{
 using (var cmd = new SqlCommand(sql, connection))
 {
 connection.Open();
 // use the reader returned by cmd.ExecuteReader(); to create Employee object
 }
}
 

This web API is vulnerable to SQL injection attacks. If a user sends a GET to
http://server/api/employees/12345, the approach just discussed works great. If another user sends
a GET to http://server/api/employees/12345;%20update%20employees%20set%20password='abc'; --,
two statements executed will be SELECT * FROM employees WHERE employee_id=12345; and
UPDATE employees SET password='abc'; --. Now, the user who issued the previous GET can log in as any other
employee, assuming the employees table stores the password in clear text in the password column. It is a far too
simplistic of an example, but it is good enough to demonstrate the risk potential.

If the user issues a GET to http://server/api/employees/12345;Truncate%20table%20employees, it can
have an even more devastating effect, provided the SQL user account under which the connection is established is
authorized to truncate tables. There are three methods to defend against SQL injection attacks.

1.	 The first line of defense in the world of ASP.NET Web API is using model binding correctly.
In the preceding example, even if the developer is not aware of SQL injection, if she has
followed the basics of programming in a strongly typed language such as C# and used
the correct type to declare the action parameter as integer, especially given the fact that
identifiers are generally numeric, a SQL injection risk is avoided. Model binding will fail
to convert the string to the expected numeric value and the request will fail with 400 – Bad
Request.

2.	 The second line of defense is validating the input for illegal characters. If the employee
identifier must be a string, such as ‘jqhuman’ instead of 12345, model binding is of no
protection and the action parameter must be string. In that case, the incoming parameter
can be checked for illegal values such as semicolons, quotes, comment delimiters such as
--, or /* */. This approach, called blacklisting, is slightly inferior to whitelisting, where you
allow only a certain set of characters. For example, if you know that the employee ID in
your organization is based on names—for example, John Q. Human is jqhuman—you can
simply allow only characters a through z, making any other character illegal. Of course, we
are assuming here the user ID will never contain any other character even if an employee
name contains one, as in the case of Richard Ricochet O’Connell.

3.	 The third and the most important line of defense is to never concatenate values into SQL
and use parameters. I rewrote Listing 15-2 to use parameters, as shown in Listing 15-3.

www.it-ebooks.info

http://server/api/employees/12345
http://server/api/employees/12345;%20update%20employees%20set%20password='abc';%20--
http://server/api/employees/12345;Truncate%20table%20employees
http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

348

Listing 15-3.  SQL Execution Using Parameters

string sql = "SELECT * FROM employee WHERE employee_id = @ID;";
using (var connection = new SqlConnection(connectionString))
{
 using (var cmd = new SqlCommand(sql, connection))
 {
 cmd.Parameters.Add("@ID", SqlDbType.Int);
 cmd.Parameters["@ID"].Value = id; // from the URI after validation
  
 connection.Open();
 // use the reader returned by cmd.ExecuteReader(); to create Employee object
 }
} 

Tip■■  B y using an object-relational mapper (ORM) like Entity Framework (EF), you can indirectly use the parameterized
queries. ORM, while executing the query corresponding to your filter expression, uses parameterized queries. So, ORM is
not just for smoothing out the relational world to the object world impedance mismatch. There are other benefits.

Overposting
An ASP.NET Web API application is vulnerable to overposting if it takes all the properties of the model object used
in the binding blindly for further processing without any validation. One of the great things about ASP.NET Web API
is that it has the same model binding capabilities of ASP.NET MVC. MVC model binding will feel like magic most of
the time. The controller action method’s parameters are automatically populated based on what comes in the HTTP
request. Binding frees developers from writing the boilerplate code to copy the values in the request to properties of
an object they want to work with. The action method code remains crisp and clean, thanks to the binding magic.

Although it is one of the coolest things, it does come with a downside. The model binder will try to map and
set all the data it can in the action method parameters from the request. Let’s say we have an Employee class, as shown
in Listing 15-4.

Listing 15-4.  Employee

public class Employee
{
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string Phone { get; set; }
 public bool IsEligibleForBonus { get; set; }
}
 

EmployeeController with the action method handling updates (PUT) accepts an Employee object as a parameter,
as shown in Listing 15-5. This method is intended to be used by an internal web application for the employees to
update their contact details. The web application has a screen with fields corresponding to only the contact details
properties: FirstName, LastName, Address, and Phone. The IsEligibleForBonus property of the Employee class
denotes if that particular employee is eligible for the annual bonus based on individual performance and a few other
similar parameters. There is a database field backing this property, but the screen used by the employees to update
the contact address will not show a field for a user to enter any value to be bound to this property.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

349

Listing 15-5.  PUT Action Method

public void Put(Employee emp)
{
 // repository.Save(emp);
}
 

Now, all a tech-savvy employee has to do is to gather the JSON representation of the Employee object sent back in
any of the HTTP GET responses to know that the property IsEligibleForBonus exists. With that knowledge, he can
manipulate an address change HTTP POST to send the additional field of “IsEligibleForBonus”:“true” to make himself
eligible for the bonus payout! The major problem here is the approach of using the domain object directly as the
parameter for the action method that allows a user to overpost.

It gets even worse if the Employee class has a property representing the user account, as shown in Listing 15-6.

Listing 15-6.  Employee Class with UserAccount Property

public class Employee
{
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string Phone { get; set; }
 public bool IsEligibleForBonus { get; set; }
  
 public UserAccount Account { get; set; }
}
 

Assuming that the UserAccount class has the Password property, sending a JSON like the one in Listing 15-7 is
all it takes to set the password property of the UserAccount object to any random password. If the database update is
done manually based on the Employee object, there is a good chance the password will not get updated because you
will be trying to update only the employees table. If the Employee class is an entity class of an ORM such as EF you are
trying to reuse and Account is a navigation property, the effects can be devastating, with the password coming in the
manipulated request making it all the way to your data store.

EF is an ORM that enables.NET Framework developers to work with relational data using domain-specific
objects. By specifying the mapping between your class model and the table model, you can let EF manage the
database operations such as selecting, inserting, updating, or deleting table rows without writing any data-access
code. For more information, see http://msdn.microsoft.com/en-us/data/ef.aspx.

Listing 15-7.  Request JSON

{
 "Id":12345,
 "Address":"123 Birchwood Lane",
 "Phone":"123-456-7890",
 "IsEligibleForBonus":true,
 "Account":
 {
 "Password":"some random password"
 }
}
 

www.it-ebooks.info

http://msdn.microsoft.com/en-us/data/ef.aspx
http://www.it-ebooks.info/

s

350

The best approach to prevent overposting vulnerabilities in ASP.NET Web API is to never use entity classes
directly for model binding. Using a subset of the entity class that expects nothing more and nothing less for the
scenario at hand is the best approach. For example, using the class shown in Listing 15-8 for model binding will
prevent any overposting. In this case, any overposted data is simply ignored by the binder.

Listing 15-8. Employee View Model

public class EmployeeModel
{
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string Phone { get; set; }
}

Of course, you need to make sure the values stored in these properties are transferred to the Employee object
before you can store it in the database. You can accomplish the same manually or use a convention-based object to an
object mapper such as AutoMapper (http://automapper.org/).

Broken Authentication and Session Management
From the point of view of ASP.NET Web API, I leave out session management because it does not apply to the stateless
services we build using ASP.NET Web API. I have covered authentication extensively in this book, but one point worth
noting here is the use of global message handlers for authentication.

As covered in Chapter 3, the global message handlers run for all the requests. Contrast this with per-route message
handlers that run for the requests falling within that route and the filters that run only for that specific action method when
applied to the action method. By using a global message handler or a global filter for authentication, you can ensure that all
API calls are authenticated without depending on the skills and knowledge levels of individual programmers who write the
various action methods. For web-hosting, you can also use an HTTP module to ensure all the requests are authenticated.

Cross-Site Scripting (XSS)
Cross-site scripting (XSS) is all about a malicious user injecting client-side script into web pages that will be viewed by
other users. This form of vulnerability is not applicable to ASP.NET Web API.

XSS comes in two flavors:

1. The nonpersistent form of XSS that occurs when the input from the client in the form of a
query string is used as is by a server to generate the response without cleansing. This form
of XSS is totally irrelevant to ASP.NET Web API.

2. The persistent form of XSS that occurs when the input from the client is stored in a persistent
store without sanitizing and subsequently retrieved and written to the response without cleansing.

Take the case of a POST request that comes to our Employee API. Let’s say we create a new employee or even
update an existing employee with the name exactly the same way it comes in the request. For example, if the request
comes in with the name as <script>alert('Howdy!');</script>, we store the same as the name of the employee
without any cleaning. If this web API is used by a web application that writes the name of the employee as is into an
HTTP response to a browser, we have a persistent XSS problem.

However, it is not the responsibility of the web API to encode the data and store it. The web API is HTTP based,
but it can be consumed by anything and the data displayed can be in any device and by any application. Escaping this
input is a moot point for, say, a WPF application displaying the name in a label in a window. It is a problem only when
the name with a script tag gets written as is into the HTTP response sent to a web browser. Therefore the responsibility
of preventing XSS vulnerability will be that of the web application consuming the web API.

www.it-ebooks.info

http://automapper.org/
http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

351

Even if the GetAllEmployees method returns <script>alert('Howdy!');</script> instead of John Q. Law,
the Home/Index view can HTML encode the name before generating the HTML for browser rendering. By default,
a JavaScript library such as JQuery performs HTML encoding. So does the Razor view engine in ASP.NET MVC. To
summarize, in most of the typical cases XSS will not be a concern for ASP.NET Web API.

Insecure Direct Object References
RESTful URIs are hackable and in fact they are supposed to be hackable. For example, let’s say
http://server/api/employees/12345 can give information about an employee John Q. Human with an employee
ID of 12345. If John gets to see his own details using that URI, it is very natural for any curious person to see what this
endpoint will return for his coworker with an ID of 12346. The direct object here is the identifier of an employee. If we
blindly return the data based on ID, it becomes an insecure direct object reference.

This is precisely the point of authorization. Authorization need not be limited to the level of action methods.
Sometimes, it needs to be more granular than that. Failure to authorize at that level for the example we looked at is an
example of insecure direct object references.

However, one point to note with respect to ASP.NET Web API compared to ASP.NET MVC is that the URI
of ASP.NET Web API is not visible to a typical user even when the client application consuming the web API is a
web application. In other words, if the URI of the employee details page of an ASP.NET MVC application is
http://server/hrapplication/employee/getdetails/12345, it is highly likely a user will attempt to edit the URI and
try it with another employee ID. In the case of ASP.NET Web API, the URI is not exposed to the end user. Security by
obscurity is not a sound security principle, though, and you must implement authorization at the right granular level
regardless of whether a user can see the URI or not.

In the preceding subsection on overposting, I suggested using a model class and gave the example of the
EmployeeModel class (Listing 15-8). There is a property with the name Id. If you think about it, can a user make an
HTTP POST and update the contact details of some other employee? The answer is yes. The model class does solve
the overposting vulnerability, but it does not prevent a user from making unintended updates. Such vulnerability is
another form of insecure direct object references. So, this form of vulnerability is not limited to URIs.

Security Misconfiguration
Security is both configured and programmed. Security misconfiguration, as the name indicates, is about not
configuring security the right way. The term configuration here is not just limited to the configuration file such as
Web.config that a programmer will instantly relate to as she reads the subsection title. Per OWASP, failing to keep your
software updated by not applying patches; not disabling and removing unnecessary services, software, and operating
system accounts; not blocking unwanted ports; and assigning the same credentials for connecting to development
and production databases all belong to this category.

Although the preceding activities are related to IT administration, programmers can introduce vulnerabilities as
well. Here are two such examples.

1.	 Sending a stack trace to the end user when there is an exception in the production
environment is a security risk. Specifying the Never option for the error details
inclusion policy in WebApiConfig.cs in the App_Start folder can stop the stack
trace from getting to the client, as follows: config.IncludeErrorDetailPolicy =
IncludeErrorDetailPolicy.Never; A programmer changing this setting to Always and
checking it in and the build process propagating the change to production is an example of
a security misconfiguration vulnerability introduced by the programmer and the software
configuration management process.

2.	 The purpose of the HttpRuntimeSection.EnableHeaderChecking property is to enable
encoding of the carriage return and newline characters in the response headers to prevent
HTTP response splitting attacks. By default, it is true so that an ASP.NET application is not
vulnerable. Setting this to false is another example of security misconfiguration.

www.it-ebooks.info

http://server/api/employees/12345
http://server/api/employees/12345
http://server/hrapplication/employee/getdetails/12345
http://server/hrapplication/employee/getdetails/12345
http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

352

Sensitive Data Exposure
Sensitive data exposure means failure to secure data at rest and data in motion. First, let’s try to understand data
in motion versus data at rest. Data in motion, as the name indicates, is about data in the network, on the move.
Data at rest is stored data, such as data in files and databases. When it comes to securing data, data in motion hogs the
limelight because you will naturally worry more about the data that is traveling out of the perimeter you can control
than the data safely stored on the servers inside your secure data centers.

Data at Rest
If Mallory tampers with messages exchanged between Alice and Bob, the impact is relatively low because it affects
only Alice and Bob. If Mallory gets her hands on sensitive stored data, though, it can affect every Tom, Dick, and Harry
whose data is stored in an insecure way.

Sensitive data vulnerabilities for data at rest stem from sensitive data getting stored in clear text without any
encryption, using a poor encryption algorithm written in-house, improper use of a standard encryption algorithm,
or lack of better processes to secure associated cryptographic materials such as keys.

Hashing Passwords for Secure Storage

In Chapter 6, I described encryption and signing from the perspective of securing data in motion, although
encryption can be used to secure data at rest as well. Now, we take a look at one of the techniques closely related
to securing data at rest, which is hashing. Hashing is the process by which arbitrary data or a message is converted
into a fixed-length string.

The important difference between encryption and hashing is that with hashing, the output cannot be reversed
back to the original state, unlike encryption. Data encrypted can be decrypted using the same keys, as in the case
of symmetric encryption, or using a different key in the case of asymmetric encryption. Data that is hashed remains
hashed forever. The defining characteristic of hashed data is that the original data can never be recovered out of the
hashed data. What is the use for it, then?

If I hash ‘world peace’ into 123456 using some algorithm and store the hash in my data store, I don’t need to
worry about someone with malicious intentions being able to recover the secret ‘world peace’ from 123456. Anytime
I run ‘world peace’ through the algorithm, it will consistently give me 123456. Thus, a great use for hashing is to store
sensitive information like a password, which the user will need to enter every time to log in to our system. We can
hash the password entered and compare the hashed result with what we stored previously to make the authentication
decision. Hashing therefore is a great technique for securing sensitive data at rest, such as a password.

Note■■  H ashing is not a one-size-fits-all solution for all data at rest security needs. You can’t hash a credit card
number and store it for later use because a credit card number can’t be recovered from the hash. Encryption is more
appropriate in that case.

There are multiple algorithms available for hashing. The MD5 Message Digest algorithm is a widely used
algorithm that produces a 128-bit (16-byte) hash value. It has a few weaknesses, which led the cryptography world
to start using Security Hash Algorithm (SHA-1). Security flaws were identified with SHA-1 as well, and SHA-2 is
the currently recommended algorithm. At the time of writing this book, a new algorithm SHA-3 is already in place,
complementing SHA-2. SHA-3 is not supposed to supersede SHA-2 because no weakness has been demonstrated
against SHA-2 so far.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

353

The System.Security.Cryptography namespace in the .NET Framework has the classes corresponding to
different hashing algorithms: MD5, SHA1, SHA256, SHA384, SHA512, and so on. The last three classes represent the
SHA-2 family of algorithms that produce a digest of size 256, 384, and 512 bits, respectively.

Let’s create an SHA256 hash for an extremely long word straight from the English dictionary,
“Supercalifragilisticexpialidocious,” and the small word “hello.” See Listing 15-9 for the code to create the hash.

Listing 15-9.  SHA256 Hash

string data = "Supercalifragilisticexpialidocious";
SHA256 hasher = SHA256.Create();
byte[] hash = hasher.ComputeHash(Encoding.UTF8.GetBytes(data));
  
string hashString = BitConverter.ToString(hash).Replace("-", "").ToLower();
 

It is extremely simple to create the hash. Just a call to the ComputeHash method will do the trick. The
BitConverter class is used to convert the byte array into a hex string representation. The output for the words
“Supercalifragilisticexpialidocious” and “hello” is shown in Listing 15-10.

Listing 15-10.  Hash Output

94730f57d7e41018d963d92fbf11618dce8274ca2c1bf72274e0285a6013c17b
2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824
 

Although the input strings are drastically different in terms of length, the digest length in both cases is 256 bits.
One important point, though, is that it is easy to crack these hashes. In other words, it is possible to get the original
string if you input these hash values to any of those online hash crackers. Even that big word is no exception. The
fundamental premise with which we started this section is that the original string cannot be recovered from the hash.
How are online tools capable of doing the extraction? These tools are not even batching or offline programs, but
online web applications that can derive the original string in a few seconds.

As we saw in Chapter 8, we can brute-force attack the hash. On the fly, we can compute the hash for a and
compare it with the value entered. If no match, we proceed with b. When we reach z, we start with aa and so on.
As we established in Chapter 8, it is going to take quite a bit of time and CPU power to make this happen.

It is possible to compute the hash ahead of time for well-known words, such as the words in a dictionary, and
when the hash is entered it becomes simply a matter of lookup. Clearly, then, the hashing in its original form is not a
good choice for storing passwords because the malicious user with the hashed passwords can easily get the original
string using something like online tools do.

The fundamental problem with plain hashing is that the mapping of a specific output to the corresponding input
can be precomputed and stored. An easy solution to this problem is salting. A salt is just a random string that is added
to the data before hashing so that the output cannot be mapped back to the input using precomputed mappings.
Thus, salting makes all the attacks, including the dictionary-based attacks, on the hash ineffective, with the exception
of brute-force attacks. It is important to keep the salt value longer, and if a unique salt value is used for each message
or data it will be all the more secure.

Salting ensures that attackers can’t fast forward the attack process using lookup tables, but an attacker can
mount a brute-force attack. With CPUs getting more powerful and cheaper and the availability of elastic computing
power available for use on an hourly basis with no up-front investment in the hardware, a brute-force attack is not
a theoretical possibility. There is a technique available known as key stretching that can make a brute-force attack
slower. It will make it so slow, in fact, that it will be practically impossible to break the hash. In a practical world, taking
a few months to crack a hash is as bad as being unable to crack it, at least from an attacker’s point of view.

Password-Based Key Derivation Function 2 (PBKDF2) is a key derivation function that is part of RSA
Laboratories’ Public-Key Cryptography Standards (PKCS) series, specifically PKCS #5 version 2.0, also published
as Internet Engineering Task Force’s RFC 2898. It replaces an earlier standard, PBKDF1, which could produce only
derived keys up to 160 bits long.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

354

There are standard algorithms available for key stretching, such as the PBKDF2 algorithm. It hashes the input
password or data along with a salt value and repeats the process many times to produce a derived key. This repeated
hashing makes brute-force attacks time consuming and frustrating for an attacker. The recommended number of
iterations is 1,000. The higher the number of iterations, the more it is going to need CPU power and hence time,
but the security will be better. See Listing 15-11 for the code that generates an SHA-1 hash using salt and PBKDF2.
The Rfc2898DeriveBytes class is SHA-1 based, and hence the resulting hash is SHA-1 and not SHA256 in this example.

Listing 15-11.  SHA-1 Hash with Salt and Key Stretching

string data = "hello";
 
byte[] salt = new Byte[32];
using (var provider = new RNGCryptoServiceProvider())
{
 provider.GetBytes(salt);
}
  
Rfc2898DeriveBytes pbkdf2 = new Rfc2898DeriveBytes(data, salt);
pbkdf2.IterationCount = 1000;
 
byte[] hash = pbkdf2.GetBytes(32);
 
string hashString = Convert.ToBase64String(hash);
 

How do we put this to use? Assuming your user table has user_id and password columns, add another column for
salt and store hashString and salt from Listing 15-11 in the password and salt columns, respectively, at the time of
user registration. You can store the salt as it is; that is, as a byte array itself. Or you can base64 encode it. Listing 15-12
shows how to authenticate user credentials at the time the user logs back in.

Listing 15-12.  User Credentials Authentication

string password = String.Empty; // Placeholder for the password from database
string saltString = String.Empty; // Placeholder for the salt from database
string userEnteredPassword = String.Empty; // User input
 
var pbkdf2 = new Rfc2898DeriveBytes(userEnteredPassword, Convert.FromBase64String(saltString));
pbkdf2.IterationCount = 1000;
byte[] computedHash = pbkdf2.GetBytes(32);
 
bool isAuthenticCredential = password.Equals(

Convert.ToBase64String(computedHash),

StringComparison.Ordinal); 

Tip■■   For encrypting data in a database, you will need a key. Never store this key in the database itself. If the
database is compromised, such as through SQL injection, the attacker will find it easy to get and decrypt the key if it is
stored in the database itself. Instead, store it in a file to which the operating system account running the database engine
has no access.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

355

Encrypting Web.Config

We saw the distinction between data at rest and data in motion in the beginning of this section. The term data at rest is
not limited to application data stored in a database or file. It does include configuration data stored in a configuration
file such as Web.config. Although encrypting the entire Web.config file might not be necessary for typical cases,
encrypting sections selectively is a good strategy to secure sensitive information in the configuration file. The best
candidates for this are database connection strings, credentials that the web API might need to use to connect to
some other systems, and so on. Encrypting the Web.config file is important because it needs to reside in a web server.
The web servers are typically in DMZs.

Before we look at the process of encrypting Web.config, let’s see what the connectionStrings section of
Listing 15-13 looks like when encrypted, as shown in Listing 15-14.

Listing 15-13.  Web.config Clear Text

<connectionStrings>
 <add name="DefaultConnection" connectionString="Data Source=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\aspnet-MyApplication-20121110193704.mdf;
 Initial Catalog=aspnet-MyApplication-20121110193704;Integrated Security=True;
 User Instance=True"
 providerName="System.Data.SqlClient" />
</connectionStrings> 

Listing 15-14.  Web.config Encrypted

<connectionStrings configProtectionProvider="RsaProtectedConfigurationProvider">
 <EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
 xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>Rsa Key</KeyName>
 </KeyInfo>
 <CipherData>
 <CipherValue>fg1RaefMxjQBV6hwx3q. . .1qnDmdDrsWcwk=</CipherValue>
 </CipherData>
 </EncryptedKey>
 </KeyInfo>
 <CipherData>
 <CipherValue>ld0t8MkPX9euWy2bjFj. . .nTEYzApmlQC9A80=</CipherValue>
 </CipherData>
 </EncryptedData>
</connectionStrings>
 

Although encryption of Web.config can be done through C# code as well, let’s focus on using the aspnet_regiis
utility. In production environments, it is likely that a system administrator will perform this task, so using a utility is a
better fit for this purpose. The aspnet_regiis tool is located in the %windows%\Microsoft.NET\Framework\versionNumber
folder. For example, it is “C:\Windows\Microsoft.NET\Framework\v4.0.30319” on my machine.

First, you need to grant the Windows account running the IIS worker process read access to the default RSA key
container, for which the pa switch is used. I have deployed the ASP.NET Web API application in the default application
pool. The account I use in the first line of Listing 15-15 reflects that fact.

www.it-ebooks.info

http://www.w3.org/2001/04/xmlenc#Element
http://www.w3.org/2001/04/xmlenc
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2001/04/xmlenc
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2000/09/xmldsig
http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

356

Listing 15-15.  aspnet_regiis Commands

aspnet_regiis -pa "NetFrameworkConfigurationKey" "IIS APPPOOL\DefaultAppPool"
 
aspnet_regiis -pef "connectionStrings" "C:\Users\102628\Desktop\MvcApplication5\MvcApplication5"
 
aspnet_regiis -pdf "connectionStrings" "C:\Users\102628\Desktop\MvcApplication5\MvcApplication5"
 

To encrypt, the pef switch is used. Arguments are the section name and path of the application. To decrypt the
Web.config file back to clear text, the pdf switch is used.

Regardless of whether the Web.config file is encrypted or not, you can use System.Web.Configuration.
WebConfigurationManager.ConnectionStrings["DefaultConnection"].ConnectionString to read the
configuration data.

Data in Motion
Securing data in motion is a broad topic. Historically, cryptography was created mainly for the purpose of securing
communications, or from the perspective of data in motion. We looked at encryption and signing from the perspective
of securing data in motion in Chapter 6.

First and the foremost, in the world of the web, transport security through HTTP/TLS (also known as HTTPS)
is the most fundamental as well as the most important aspect in securing communications. HTTPS, when correctly
done, is the easiest to work with from a programmer’s point of view because there is nothing additional that needs
to be done. Of course, from the point of view of IT administration, operations, and budgeting, it means procuring,
installing, and managing valid certificates on the server side.

I would like to quote a couple of paragraphs from one of Eran Hammer’s posts to illustrate the fact that HTTPS is
not the silver bullet for all vulnerabilities related to data in motion.

Doesn’t HTTPS Solve Everything?

HTTPS guarantees an end-to-end secure connection. The implementation and deployment details
are critical to ensure that, but when done correctly (which is not always the case), is a great solution.
What HTTPS provides is a secure channel. Any secret, password, or bearer token sent over HTTPS is
protected and cannot be compromised by an attacker listening in on the line. HTTPS allows a client
to send a secret to its desired destination securely.

However, HTTPS can’t help if the client’s desired destination is a bad place. HTTPS doesn’t help
prevent phishing attacks because anyone can get an SSL certificate and show the secure icon in the
browser. The fact you are using a secure channel doesn’t mean the entity on the other side is good. It
just means that no one else can listen in on it (just the bad guys). If a client sends their bearer token
to the wrong place, even over HTTPS, it’s game over.

—Eran Hammer
http://hueniverse.com/2010/09/oauth-2-0-without-signatures-is-bad-for-the-web/

Eran Hammer was the lead author and editor of the OAuth specifications. The preceding quote is taken from his
post pertaining to the subject of bearer tokens support in OAuth 2.0. OAuth 1.0 requires cryptographic signatures
to be sent with the requests. OAuth 2.0 dropped signature and cryptography in favor of bearer tokens. We have seen
key-of-holder tokens versus bearer tokens when we were dealing with SAML tokens, but the concept is that bearer
tokens are like cash. Finders, keepers!

www.it-ebooks.info

http://hueniverse.com/2010/09/oauth-2-0-without-signatures-is-bad-for-the-web/
http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

357

Although Eran Hammer’s post pertains to OAuth access tokens, the given narrative holds good for any sensitive
data in motion. HTTPS is great, but it takes a great deal of discipline and deep knowledge. We tend to take the path of
least resistance, especially under project schedule pressure, to get things working. If we get an error because
the certificate has some problems or there is some issue related to the server configuration, we don’t generally
fix the ultimate problem but only the proximate problem. It is far easier to disable the certificate checking than fix
the ultimate problem. Although not intentional, we make the HTTPS mechanism vulnerable to MITM attacks in
this process.

Signing ASP.NET Web API Response

The transport security of HTTPS ensures no one can eavesdrop or mount MITM attacks, but it does not ensure the
end-to-end security that message security provides. In this section, I show one useful little technique related to
signing. When HTTPS cannot be used or if you believe in defense in depth and want to build something additional on
top of HTTPS, you can incorporate a signature to a web API response to make it tamper-proof.

I use an action filter for this so that only the selective action methods have their responses signed.
Listing 15-16 shows the code for the action filter. I override the OnActionExecuted method to implement the signing
logic. The OnActionExecuted method runs after the action method and hence is the appropriate place for the
implementation of our logic. The signature is generated using the URI, HTTP method, and the entire message body.
SHA256 HMAC is stuffed into the X-Signature response header for the client to validate.

Listing 15-16.  Signing Filter

public class SignIt : ActionFilterAttribute
{
 public override void OnActionExecuted(HttpActionExecutedContext context)
 {
 // 256-bit shared key - hard-coded here only for the purpose of this example
 string key = "foGqiG0GLeY8VGdP2PZoS9aoOB7VjkNaUc549Ac2OCkh2t5rk9";
 key += "wTB0Ebj98I7LGE1mpAkAHXabU/aHTiRhud9A==";
 
 string response = context.Response.Content.ReadAsStringAsync().Result;
 
 if (!String.IsNullOrWhiteSpace(response))
 {
 string data = String.Format("{0}{1}{2}", context.Request.RequestUri.ToString(),
 context.Request.Method,
 response);
 
 byte[] bytes = Encoding.UTF8.GetBytes(data);
 using (HMACSHA256 hmac = new HMACSHA256(Convert.FromBase64String(key)))
 {
 string signature = Convert.ToBase64String(hmac.ComputeHash(bytes));
 context.Response.Headers.Add("X-Signature", signature);
 }
 }
 }
}
 

The client can validate the signature similar to the way in which it was created. The client code is shown in
Listing 15-17. I use the same key on the client side and hence this is a symmetric shared key. I compute the signature
and compare it with the one in the X-Signature header. Matching values indicate the response is not tampered with.
The code in Listing 15-17 assumes the X-Signature response header will always be present, for brevity’s sake.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

358

Listing 15-17.  Client Validating the Response Integrity

static void Main(string[] args)
{
 string key = "foGqiG0GLeY8VGdP2PZoS9aoOB7VjkNaUc549Ac2OCkh2t5rk9";
 key += "wTB0Ebj98I7LGE1mpAkAHXabU/aHTiRhud9A==";
 
 using (HttpClient client = new HttpClient())
 {
 Uri uri = new Uri("http://localhost:20759/api/employees/12345");
 
 string creds = String.Format("{0}:{1}", "badri", "badri");
 byte[] bytes = Encoding.ASCII.GetBytes(creds);
 var header = new AuthenticationHeaderValue("Basic", Convert.ToBase64String(bytes));
 client.DefaultRequestHeaders.Authorization = header;
 
 var result = client.GetAsync(uri).Result;
 string response = result.Content.ReadAsStringAsync().Result;
 
 string message = String.Format("{0}{1}{2}", uri.ToString(), "GET", response);
 
 byte[] signature = Encoding.UTF8.GetBytes(message);
 using (HMACSHA256 hmac = new HMACSHA256(Convert.FromBase64String(key)))
 {
 byte[] signatureBytes = hmac.ComputeHash(signature);
 bool isValid = Convert.ToBase64String(signatureBytes)
 .Equals(result.Headers.GetValues("X-Signature").First(),
 StringComparison.Ordinal);
 }
 }
} 

Tip■■  T he response headers can also be included for signing, but include sensitive custom headers only because
headers can be added or changed by intermediaries. It is not a good idea to include all the headers.

Missing Function Level Access Control
The missing function level access control vulnerability is attributed to applications not protecting the low-level
functions properly. This is related to insecure direct object references, but there is a major difference. Whereas
insecure direct object references is about input data, the missing function level access control vulnerability is about
failing to protect functions.

For example, let’s say http://server/api/employees/12345 can give information about an employee with an
employee ID of 12345. A user who has read-only access to the employee details can get the JSON representation and
attempt an HTTP POST on the same URI after manipulating the JSON of the GET response. If ASP.NET Web API allows
HTTP POST, it is vulnerable to the missing function level access control vulnerability.

Implementing a sound authorization mechanism for every API call is very important. A global message
handler or a filter that runs for all the calls and controls the access based on the claims using the subclass of
ClaimsAuthorizationManager, as we saw in Chapter 5, is the best approach to prevent this vulnerability in ASP.NET
Web API.

www.it-ebooks.info

http://localhost:20759/api/employees/12345
http://server/api/employees/12345
http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

359

Cross-Site Request Forgery (CSRF)
The cross-site request forgery (CSRF, pronounced sea-surf) is simply tricking the web browser to issue a request to
a web site using an authentication token you received previously as part of regular authentication. CSRF is typically
associated with cookies containing an authentication ticket, so you might wonder what CSRF has to do with ASP.NET
Web API. A web API is REST-based, and I don’t use a cookie. Unfortunately, a cookie is not the only thing that can be
exploited by CSRF attacks. A browser does cache things other than cookies, such as a user ID and password entered by
a user directly into the browser during basic authentication.

Suppose I make a request from my web browser to http://server.com/api/Employees/123 protected by basic
authentication. Because the browser receives a WWW-Authenticate response header indicating a basic scheme, the
browser pops up a dialog box and gets my credentials. The credentials are sent back diligently, like a cookie, in all the
subsequent requests to the same path /api/Employees.

The basic authenticated credential is similar to an in-memory cookie, as you need to close your browser to get rid
of the cached credentials. The browser caches the credentials with good intentions. It does not want to bombard you
with authentication dialog boxes for every resource requested from the server. Unfortunately, all good intentions do
not ensure good consequences.

Understanding CSRF through Basic Authentication
Let’s look at an example involving ASP.NET Web API to understand how HTTP basic authentication can be exploited.
Because it involves basic authentication, you can deploy the application in IIS and enable HTTPS if you would like.
Transport security through HTTPS, or the lack of it, is not going to alter the end result.

We need Fiddler’s help to capture traffic. If you enable HTTPS, you need to enable Fiddler to decrypt HTTPS
traffic. The following steps show CSRF with ASP.NET Web API protected by HTTP basic authentication.

1.	 Create a new ASP.NET MVC 4 project in Visual Studio using the Web API template.

2.	 Create a new ApiController (EmployeesController) and a class (Employee), as shown in
Listing 15-18.

Listing 15-18.  EmployeesController

public class EmployeesController : ApiController
{
 [Authorize]
 public IEnumerable<Employee> Get()
 {
 return new Employee[]
 {
 new Employee() { Id = 12345, FirstName = "John", LastName = "Human" },
 new Employee() { Id = 67890, FirstName = "Jane", LastName = "Public" }
 };
 }
 
 [Authorize]
 public Employee Get(int id)
 {
 return new Employee()
 {
 Id = id,
 FirstName = "John",
 LastName = "Human"
 };
 }

 

www.it-ebooks.info

http://server.com/api/Employees/123
http://www.it-ebooks.info/

s

360

 public void Post(Employee emp)
 {
 // repository.Save(emp);
 }

 public void Put(Employee emp)
 {
 // repository.Save(emp);
 }
}

public class Employee
{
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

3. Implement basic authentication using a message handler, as we did in Chapter 8.

4. Hook this message handler into the pipeline by adding the handler to the handlers
collection in the WebApiConfig file in the App_Start folder.

5. Change the view Index.cshtml corresponding to HomeController, as shown in Listing 15-19.

Listing 15-19. Index.csthml: Index View of HomeController

@section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#search').click(function () {
 $('#employees').empty();
 $.getJSON("/api/employees", function (data) {
 $.each(data, function (i, employee) {
 var content = employee.Id + ' ' + employee.FirstName;
 content = content + ' ' + employee.LastName;
 $('#employees').append($('', { text: content }));
 });
 });
 });
 });
 </script>
}
<div>
 <div>
 <h1>
 Employees Listing</h1>
 <input id="search" type="button" value="Get" />
 </div>
 <div>
 <ul id="employees" />
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

361

6.	 The view simply makes an AJAX call to /api/employees using JQuery and shows the result
as an unordered list.

7.	 Create a new MVC controller, BadController with Index action. The controller action
method and the view are shown in Listing 15-20 and Listing 15-21, respectively.

Listing 15-20.  BadController: Index Action Method

public class BadController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
} 

Listing 15-21.  BadController: Index Action View

@{
 ViewBag.Title = "Index";
}
 
<h2>Index</h2>

@section scripts{
 <script type="text/javascript">
 document.getElementById('myForm').submit();
 </script>
}
  
<form id="myForm" action="/api/employees" method="post">
 <input type="hidden" name="Id" value="78956" />
 <input type="hidden" name="FirstName" value="John" />
 <input type="hidden" name="LastName" value="Human" />
</form>

 

8.	 In this case, BadController runs in the same application, but it is only a placeholder for
illustration. It can be anything, such as a page served up by any site or even a static HTML
page in your computer.

9.	 Now that we are done with the coding, let’s test this using the following steps.

a.	 Go to https://server/yourapplication, which will show the Index view of
HomeController.

b.	 If you have configured HTTPS and have not used a valid server-side certificate, the
browser will complain. Ignore it for the purpose of this test.

c.	 Click the Get button. The browser should pop up a dialog box, get your credentials,
and show the list of employees as an unordered list.

d.	 Without closing the browser, browse to any sites of your liking and come back to our
application after some time. It can even be the next day.

www.it-ebooks.info

https://server/yourapplication
http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

362

e.	 Go to https://server/yourapplication/bad. The page will show up normal and is
nothing special.

f.	 If you see the Fiddler capture, you will notice that the bad page has made both a GET
and a POST request to the API successfully, using your cached basic credentials. As
you can imagine, the bad page can be something served to you by any web server
in the world. The page is just plain HTML. To the eyes, it doesn’t look different. By
making the image width and height zero, even that broken image is not visible.

The fact of the matter is that the web page to which you have surfed to has successfully executed a GET and a
POST, tricking your browser to send the authorize header with your credentials to our web API. Through the POST
request, it could have inserted a random employee into our employee database. Our GET is nullipotent, so there’s not
much damage there.

It is better to avoid HTTP basic authentication for a web API that will need to be accessed from a web page
running inside the context of a browser. Does that mean HTTP basic authentication is practically worthless?
The answer is no. We have a CSRF problem only when a browser is in the picture. For nonbrowser clients, basic
authentication over HTTPS is still a good, simple option.

CSRF Involving Cookies
CSRF involving cookies is typically relevant to ASP.NET Web API when it is protected by forms authentication.
Forms authentication is covered in depth in Chapter 2. When you navigate to a page for the first time, you will
be redirected to a login page. On successful authentication, a cookie with an authentication ticket gets written to
the HTTP response. The browser gets the cookie and starts sending the cookie back to the web application in the
subsequent requests, until the time the cookie expires. If the cookie is an in-memory cookie, when the user closes
the browser the cookie ceases to exist.

As long as the cookie is valid, the browser diligently sends the cookie when a request is made to the web
application that has sent the cookie in the first place. The key point to note is that browser sends the cookie whether
you as the user initiate an HTTP GET or POST or the browser itself makes it.

When will the browser make a request without you telling it to? When an HTML page has to be rendered, the
browser makes multiple requests without getting your permission to get files like CSS, script files, and images. If there
is an image with the src attribute set to URI http://server.com/employee/delete/12345, the browser will make the
GET request and trigger the code execution on the server side and probably delete the employee with identifier 12345.

The resource http://server.com/employee/delete/12345, corresponding to an action method Delete in
EmployeeController, is protected by forms authentication. If a request is made to the URI directly, the browser will
be redirected to the login page. Only on successful authentication can a user can do anything useful with the web
application.

The browser is making a GET to this page without your knowledge. If you have previously logged into this web
application and have a session open—that is, you have a live cookie with the authentication ticket—the browser
diligently sends the cookie with this GET request triggered by the browser’s attempt to retrieve the image.

ASP.NET is happy because it gets the ticket and runs the code on the server side. The effect can be as devastating
as someone draining your bank account, but it all boils down to what the code on the server side does. Making GET
requests nullipotent is a deterrent, but not sufficient to plug this security hole. It is quite easy to post an HTML form
using a few lines of JavaScript.

If possible, it is better to avoid forms authentication involving cookies with ASP.NET Web API. There is no reason
for you to use cookies containing an authentication ticket to be sent back and forth between your web browser-based
client and a web API, like what forms authentication does. However, if you must use such a cookie for a valid
reason—honestly, I can’t think of even one valid reason why cookies must be used with a web API—you have to
be aware of the fact that your web API is now susceptible to CSRF attacks.

We are resigned to the fact that we have to live with a cookie. How do we prevent CSRF attacks? By looking to the
people who have already designed such mechanisms for web applications, such as the antiforgery token that ASP.NET
MVC provides.

www.it-ebooks.info

https://server/yourapplication/bad
http://server.com/employee/delete/12345
http://server.com/employee/delete/12345
http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

363

One of the important characteristics of CSRF is that the malicious user is generally in the dark with respect to
the interactions between the user and the web site. He simply tricks the browser to make a request that the user does
intend to initiate and expects to gain something out of this unintended request. ASP.NET MVC’s antiforgery token is a
simple mechanism that utilizes the preceding fact (see Figure 15-1).

ASP.NET MVC Web
Application

Browser

GET

POST

Set-Cookie: —RequestVerificationToken=abcd

Cookie: —RequestVerificationToken=abcd

—RequestVerificationToken=abcd
&name=John...

<form action=“..”method=“post”>
<input name=“—RequestVerificationToken”

type=“hidden” value“abcd”/>
<!-- Rest of the form elements -->
</form>

Figure 15-1.  MVC antiforgery token in action (approximated for easy understanding)

A token is written into a hidden field that is part of the HTML form to be submitted, and the same token is written
as a cookie into the response. When an authentic user makes the POST, the cookie is sent back with the token in the
header and so is the hidden field with the token in the body. On the server side, a simple check that compares these
two values can detect CSRF. The malicious user can trick the browser into making a request with cookies but cannot
forge the request to contain the same token because he is in the dark with respect to what gets sent between the user
or the victim and the web application.

In the preceding example, the attacker can trick the browser to issue a request to the web application with a
__RequestVerificationToken cookie in the request but will not know the value abcd to put in the message body.
Of course, abcd is just a placeholder and a real token will be a long, hard-to-guess cryptic string. The ASP.NET
MVC web application can immediately reject the request because the message body either does not contain the
__RequestVerificationToken field at all or, if it is present, the value will be different from the value in the cookie.

The MVC framework offers the AntiForgeryToken() helper method that can be used to insert the hidden field
and cookie. By putting @Html.AntiForgeryToken() inside the form, we can accomplish the same thing. On the server
side, the action method that handles the POST can be decorated with a ValidateAntiForgeryToken attribute that will
take care of comparing the header and body token values and rejecting the forged requests.

One fundamental assumption with the implementation of an antiforgery token is that our ASP.NET MVC
application does not have any XSS loophole. If there is one, a malicious user can read the antiforgery token value and
use it to forge valid HTTP POSTs.

Using the ASP.NET MVC Antiforgery Token with ASP.NET Web API

It is not hard to implement a mechanism similar to the antiforgery token of ASP.NET MVC. Better yet, you can
piggyback on the antiforgery mechanism itself. If you have @Html.AntiForgeryToken() somewhere inside your MVC
view, your JavaScript should be able to read the hidden field and stuff the token in a custom header when you make
the AJAX call to the web API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

364

Assuming that the web API and your web application are in the same domain so that the cookie containing the
session ticket created by the web application can be used by the web API as well to establish identity, all three things
will travel in the HTTP request headers: the cookie with the authentication ticket, the cookie with the token value, and
the custom header with the token value.

On the server side, a message handler can be plugged into the web API pipeline to perform the token
validation. The message handler can right away reject the request if the custom header is missing. If both the
cookie and the custom header are present in the request, the handler can compare the token value in the cookie
and custom header and reject the request if there is any discrepancy in the values. There is a method available,
AntiForgery.Validate(string, string), that the message handler code can use to perform the comparison of
the token values. When your browser gets tricked to send the cookies as a result of a CSRF attack, it will send both
cookies but not the custom header. Even if the header is sent, the value will not match. The following steps show
how to use an antiforgery token with ASP.NET Web API.

1.	 We use the same project we created in the previous subsection. Create an action method
TestAft in HomeController and create a view for this action, copying and pasting the code
from Listing 15-22. By including the AntiForgeryToken() helper, we make sure a hidden
field with a token gets written into the page. In the case of ASP.NET MVC, this typically will
be inside a form so that this field travels in the message body when the form is submitted.
In the case of an AJAX call to a web API, we simply need to take that token value and put it
in a request header, which I have named X-AFT. When this view is converted into HTML
and sent to the browser, in addition to the hidden field a cookie is also sent, which looks
something like this: Set-Cookie: __RequestVerificationToken_L012. . .I081; path=/;
HttpOnly. The browser starts sending this cookie to the server for all subsequent requests.
As we make this GET request, the X-AFT request header and the cookie get sent to our web
API. If the user is already forms authenticated, the ticket cookie will also get sent.

Listing 15-22.  Index.csthml: Index View of HomeController

@section scripts{
 <script type="text/javascript">
 $(document).ready(function () {
 $('#search').click(function () {
 $('#employees').empty();
 
 $.ajax({
 cache: false,
 dataType: 'json',
 type: 'GET',
 headers: { "X-AFT": $('input[name="__RequestVerificationToken"]').val() },
 contentType: 'application/json; charset=utf-8',
 url: '/api/employees',
 success: function (data) {
 $.each(data, function (i, employee) {
 var content = employee.Id + ' ' + employee.FirstName;
 content = content + ' ' + employee.LastName;
 $('#employees').append($('', { text: content }));
 });
 }
 });
 });
 });
 </script>
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

365

@Html.AntiForgeryToken()
<div>
 <div>
 <h1>
 Employees Listing</h1>
 <input id="search" type="button" value="Get" />
 </div>
 <div>
 <ul id="employees" />
 </div>
</div>
 

2.	 Create a message handler by calling AntiForgeryTokenHandler as shown in Listing 15-23
to validate the antiforgery token. Note the following points.

a.	 The message handler extracts the cookie token and form token (in
our case it becomes the header token) using request.Headers.
GetCookies(AntiForgeryConfig.CookieName) and request.Headers.
GetValues("X-AFT"), respectively, and passes the token values to the
AntiForgery.Validate method.

b.	 If the tokens are valid, the Validate method does nothing. Otherwise, it throws an
exception. We swallow that, but the isCsrf flag will not be set to false. Based on the
flag, we send a forbidden response and short-circuit the pipeline processing.

c.	 The message handler is unforgiving. It assumes every request is a forged request and
expects you to prove otherwise by sending the appropriate tokens. It also expects
the antiforgery tokens to be sent in all kinds of requests, including GET, but how you
want to handle this part is entirely up to you. You can surely show some leniency for
nullipotent methods like GET.

Listing 15-23.  AntiForgeryTokenHandler

public class AntiForgeryTokenHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 bool isCsrf = true;
 
 CookieHeaderValue cookie = request.Headers
 .GetCookies(AntiForgeryConfig.CookieName)
 .FirstOrDefault();
 if (cookie != null)
 {
 if (request.Headers.Contains("X-AFT"))
 {
 try
 {
 AntiForgery.Validate(cookie[AntiForgeryConfig.CookieName].Value,
 request.Headers.GetValues("X-AFT").First());
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

366

 isCsrf = false;
 }
 catch (Exception) { }
 }
 }
 
 if (isCsrf)
 {
 return request.CreateResponse(HttpStatusCode.Forbidden);
 }
 
 return await base.SendAsync(request, cancellationToken);
 }
}
 

3.	 To see this handler in action, make a GET request to
http://localhost:<port>/home/testaft and click Get button.

Note■■   For those with an eye for details, a 403 – Forbidden response is sent instead of 401 – Unauthorized to signify
the fact that we are refusing to serve this request. 401 – Unauthorized is sent when the credentials are missing or if the
credentials are incorrect. However, in our case it is a request forgery. 404 – File not found can also be sent back because
we don’t want to send the reason why we refuse to serve the request.

WEB API FOR JAVASCRIPT CONSUMPTION 

The root cause for the CSRF evil is the web browser itself. The cookies and cached credentials are the
proximate reasons, but if there is no web browser there will be no CSRF. However, browser-based applications
are everywhere and nothing beats the AJAX-powered user experience in the web browsers—not just from a
performance perspective, but even from an end user perception.

So if we have to develop a web API to be consumed by JavaScript, how can we secure the web API? It is a unique
problem because we tend to focus on security with the assumption that endpoints are trustworthy. Alice and Bob
are always good natured folks. Only Mallory and Eve are bad, aren’t they?

In the case of JavaScript, any kind of security logic you write will be exposed to the users. A smart user can
always figure out what is going on by reviewing the script code and debugging HTTP messages through tools
like Fiddler. Thus, we cannot implement any kind of security directly in JavaScript. JavaScript must not have the
knowledge of any sensitive information like credentials or the knowledge to obtain the same. Credentials should
be made available to JavaScript either by the user interaction or by the server-side application on a need basis.

One option is to have the server-side code drop a token of some sort in the HTML into a hidden field for
JavaScript to pick up and use as credentials to talk to a web API. This is similar to the way we used the
antiforgery token. Without help from the server-side code, JavaScript cannot talk to a web API.

Another option is to use three-legged authentication involving the user. The implicit grant flow of OAuth 2.0 that
we touched on in Chapter 11 and implemented using DNOA in Chapter 13 is a good candidate here. Without the
user’s involvement, no token can be obtained and thus no access is allowed to the web API.

www.it-ebooks.info

http://localhost:%3cport%3e/home/testaft
http://localhost:%3cport%3e/home/testaft
http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

367

Using Known Vulnerable Components
This vulnerability is not specific to ASP.NET Web API. It is always a good practice to keep all the application
components, including third-party components, up to date by applying patches and fixes as soon as they are available.

Although the IT administration teams in a typical enterprise are diligent about updates to major software
components such as the operating system and database engines, the task of keeping application components up to
date generally falls through the cracks between IT administration and application maintenance teams. Processes
must be put in place to ensure this does not happen.

Before you commit to using a third-party component, ensure the security aspects are all covered and that there
is support available from the third party to address any security issue that might arise out of their code as well as the
components they use.

Unvalidated Redirects and Forwards
This vulnerability is not applicable to ASP.NET Web API. However, it is worth noting the redirects that happen in
OAuth 2.0 that we saw in the previous chapters. If you implement the OAuth 2.0 authorization server, ensure you
have proper validations in place to make sure the redirect URI in the requests matches the URI registered with the
client application.

Security = Hardware + Software + Process
Application security is a combination of hardware and software security with well-defined processes backing them. By
hardware, I mean the infrastructure including the servers as well as networking components such as firewalls, routers,
and so on. By software, I mean system software such as the operating system and application software, both the code
you write and the code you reuse. The third one is the set of processes that need to be put in place such as rotating
symmetric keys regularly, renewing the X.509 certificates that are about to expire, and so on.

However, being a programmer, all the problems will look like potential candidates for programming-based
solutions; if all you have is a hammer, every problem is a nail. I use two related attacks to illustrate how to choose an
effective countermeasure.

1.	 A denial of service (DOS) attack is about overwhelming a network resource such as
ASP.NET Web API with such a high volume of requests that legitimate users do not get
serviced; in other words, the users are denied service. A distributed denial of service
(DDOS) is a variant of a DOS attack. Multiple systems distributed across the Internet work
in unison to overwhelm a target.

2.	 A brute-force attack is generally about guessing a user’s password and bypassing access
control. It involves running through all the possible permutations of characters until the
correct password is found.

A DOS attack and brute-force attack are related in the sense that both use automation through some kind
of software to hit the servers, but they differ in the motive. A DOS attack is just about denial of service, whereas a
brute-force attack strives to get the credentials of a user. ASP.NET Web API lends itself well to these kinds of attacks
because it is extremely easy to interact with. After all, a web API is intended to be used by another application rather
than an end user, as in the case of web applications. Also, programming in HTTP and parsing JSON or XML is simple
and straightforward. Writing a simple C# program that runs a loop to do GETs or POSTs to a URI will be a few lines of
code. In the .NET Framework, running parallel loops maximizing the usage of all the cores of the CPU in a computer is
far too easy for any experience level.

If you are a programmer, the immediate thing that might come to your mind from the perspective of a
countermeasure is to write an ASP.NET Web API message handler to log the requests and the timestamp and detect
the DOS or brute-force patterns. However, for these kinds of attacks a message handler approach might not be
efficient. Ideally, it is better to ward off these attacks much earlier in the life cycle. Even a handler running right after

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

368

HttpServer is too late. The request has come in through the ASP.NET pipeline, and CPU and memory resources were
already spent in creating some of the ASP.NET and even web API objects.

The best solution is hardware-based defense mechanisms involving routers and firewalls. If those are not
feasible, having restrictions at the web-server level, such as Dynamic IP Restrictions Extension for IIS, is better than
creating our own solution (provided your ASP.NET Web API is web-hosted). Dynamic IP Restrictions for IIS can
inspect the source IP of the requests, look for attack patterns, and place the offending IP on a temporary deny list.
Although this is just one example, it helps to illustrate the thought process for securing an application in a
holistic sense.

The following are some of the security principles that support this holistic thinking.

1.	 Principle of least privilege means giving a user only those privileges absolutely necessary
to perform the task. If your ASP.NET Web API must access a database, you will need a user
account to connect to your database from the web API. You can, of course, use a database
system administrator account such as sa, which can do everything with your database.
However, it is not according to the principle of least privilege. If you are reading and writing
to tables, as any typical application does, the database user account must have the privileges
to only read and update rows of the tables in your database. The obvious advantage of this
approach is that if your application has a SQL injection flaw introduced by a programmer,
the damage will be minimal. For example, the malicious user cannot truncate your tables.

2.	 Defense in depth is the use of multiple security countermeasures to protect your
application. This is based on the military principle that it is more difficult for an enemy
to defeat a multilayered defense than to overcome a single line of defense. This is
another case for teamwork between different IT teams. As an example, your network
administrators ensure your firewalls and routers pass only those requests coming in from
a certain IP range through a certain port. Your application logic builds on top of that and
ensures only authentic and authorized users access to application resources.

3.	 Default denial, also known as whitelisting, is the approach of assuming every entity is a
malicious entity except those on a list of entities that the system has in its good books. The
mechanism of access control that we saw in Chapter 5 is an example for this approach. If
the application can identify a user and authenticate the credentials, the user can use the
application subject to the rights the user has been assigned. The same principle can be
applied to other layers as well, such as firewalls. By default, your enterprise firewall denies
every request coming in. You make exceptions to this principle by raising requests to your
network administration team to enable IP address ranges and ports.

Web Server Fingerprinting
As you know, fingerprints identify human beings. In the world of the web, fingerprinting is a process that identifies
a web server based on response messages, specifically the response headers and the order of the headers produced
by the web server. Fingerprinting produces details about the web server such as server type, server software, and
platform details. Attackers can use this data maliciously because security vulnerabilities typically are related to
platforms and versions of the software.

I cover this topic because wiping the web server fingerprints clean off the server responses can come to you as
an action item to comply with the policies of your security administration team or the operations team. Sometimes,
reports based on penetration tests do highlight fingerprints as a vulnerability. Removing fingerprints is accomplished
more along the lines of security through obscurity, which is all about using secrecy to provide security. It is debatable
if security through obscurity is a solid approach, but at times it is good to keep the head down. Without question, what
really helps is keeping the Windows OS and all server-side software updates by patching them when a new fix or a
service pack is available, although it generally is not something that a programmer, software designer, or a technology
architect would do, especially in production servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

369

Listing 15-24 shows the response headers that are produced by the IIS running on my machine. It is obvious from
the response headers that the server is IIS and that we are using the ASP.NET framework.

Listing 15-24.  Response Headers

HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Type: application/json; charset=utf-8
Expires: -1
Server: Microsoft-IIS/7.5
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Wed, 07 Nov 2012 17:15:48 GMT
Content-Length: 244
 

To remove X-AspNet-Version and X-Powered-By or just change X-Powered-By to something else, you need to edit
the Web.config file of your application, as shown in Listing 15-25.

Listing 15-25.  Web.config Changes

<system.web>
 . . .
 <httpRuntime targetFramework="4.5" enableVersionHeader="false" />
 . . .
</system.web>
<system.webServer>
 . . .
 <httpProtocol>
 <customHeaders>
 <remove name="X-Powered-By" />
 <add name="X-Powered-By" value="Biofuel" />
 </customHeaders>
 </httpProtocol>
</system.webServer>
 

The Server header can be removed using the UrlScan free utility from Microsoft, in the case of IIS 6.0 and IIS 7.0
classic mode. For the IIS 7.0 integrated pipeline, where the .NET Framework–based modules are first-class citizens,
you can write a native module. Even better, write just a few lines of code in your Global.asax.cs to remove the Server
header, as shown in Listing 15-26.

Listing 15-26.  Global.asax.cs

public class WebApiApplication : System.Web.HttpApplication
{
 protected void Application_Start() { . . . }
  
 protected void Application_PreSendRequestHeaders(object sender, EventArgs e)
 {
 HttpContext.Current.Response.Headers.Remove("Server");
 }
} 

www.it-ebooks.info

http://www.it-ebooks.info/

s

370

Logging, Auditing, and Tracing
Logging, auditing, and tracing are technically the same: They are all about creating records of the events happening
in an application. However, the purpose is what differentiates them. There are no hard and fast rules to demarcate
logging, auditing, and tracing, but it is helpful to understand the differences at a broader level.

Logging is writing the details of events happening in an application to a persistent store. Logging can be about
recording normal events as well as abnormal events such as errors or exceptions. The purpose of logging is mainly
from the operations perspective to get the operational metrics as well as to help ensure a service-level agreement
(SLA). It is typical to have specialized software monitoring the logs for specific events and alerting the team
supporting the application. Logging is generally a nonfunctional requirement.

Auditing or audit logging, to be exact, is a specialized case of logging aimed at capturing logs of events from the
perspective of security such as authentication and authorization failures or a user accessing a protected resource and
making changes. Whereas logging is about recording the details of the events themselves, auditing is about recording
the user identity as well—the user who was responsible for the event or who acted as the trigger. Depending on the
nature of the business, some applications create audit logs for pretty much everything, some for a critical subset, and
some create no audit logs at all. Audit logging can be a functional or nonfunctional requirement, again depending on
the nature of the application.

Tracing is associated with the development phase of the systems development life cycle (SDLC). Tracing is a
special case of logging that aims at recording information about an application’s code execution. Tracing is used
by programmers for debugging code. Tracing is generally not considered a functional or nonfunctional
requirement because it is not about the user actions. It mainly is about the application itself and is just a tool for
the development team.

The techniques relevant to any software application with respect to logging holds good for ASP.NET Web API.
The logging mechanism defined in your organizational standards can be employed with a web API as well. However,
ASP.NET Web API does have built-in tracing that can trace the execution of the code in the web API pipeline in
addition to your own code.

Implementing Tracing in ASP.NET Web API
We now look at the tracing mechanism available out of the box in ASP.NET Web API. The most fundamental step in
enabling tracing is to create a class that implements the System.Web.Http.Tracing.ITraceWriter interface, as shown
in Listing 15-27.

Listing 15-27. Trace Writer

public class WebApiTracer : ITraceWriter
{
 public void Trace(HttpRequestMessage request,
 string category,
 TraceLevel level,
 Action<TraceRecord> traceAction)
 {
 TraceRecord rec = new TraceRecord(request, category, level);
 traceAction(rec);

 using (Stream xmlFile = new FileStream(@"C:\Path\log.xml", FileMode.Append))
 {
 using (XmlTextWriter writer = new XmlTextWriter(xmlFile, Encoding.UTF8))
 {
 writer.Formatting = Formatting.Indented;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

371

 writer.WriteStartElement("trace");
 writer.WriteElementString("timestamp", rec.Timestamp.ToString());
 writer.WriteElementString("operation", rec.Operation);
 writer.WriteElementString("user", rec.Operator);
 writer.WriteElementString("message", rec.Message);
 writer.WriteElementString("category", rec.Category);
 writer.WriteEndElement();
 writer.WriteString(Environment.NewLine);
 }
 }
 }
}
 

ITraceWriter requires the Trace method to be implemented. I’m creating a trace file with each entry in the
form of an XML element named trace. To plug this in, add a line of code in WebApiConfig under App_Start like this:
config.Services.Replace(typeof(ITraceWriter), new WebApiTracer());

As it is, if you run the application and issue a web API request, it will start tracing the code execution in the web
API pipeline. To trace from our code you can call the Trace method, as shown in Listing 15-28.

Listing 15-28.  Tracing from ApiController

public class EmployeesController : ApiController
{
 [Authorize]
 public IEnumerable<Employee> Get()
 {
 Configuration.Services.GetTraceWriter().Trace(Request, "MyCategory", TraceLevel.Info,

 (t) =>
 {
 t.Operation = Request.Method.Method;
 t.Operator = User.Identity.Name;
 t.Message = "Get Employees";
 });
 
 return new Employee[]
 {
 new Employee() { Id = 12345, FirstName = "John", LastName = "Human" },
 new Employee() { Id = 67890, FirstName = "Jane", LastName = "Public" }
 };
 }
}
 

It is possible to trace from handlers as well. Listing 15-29 shows a message handler that logs the requests and
response messages. We use the ReadAsStringAsync method of HttpMessageContent to extract the request and
response messages in the raw format and write to the trace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

372

Listing 15-29.  Tracing Handler

public class TracingHandler : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 HttpMessageContent requestContent = new HttpMessageContent(request);
 string requestMessage = requestContent.ReadAsStringAsync().Result;
 
 var response = await base.SendAsync(request, cancellationToken);
 
 HttpMessageContent responseContent = new HttpMessageContent(response);
 string responseMessage = responseContent.ReadAsStringAsync().Result;
 
 GlobalConfiguration.Configuration.Services.GetTraceWriter()
 .Trace(request, "MyCategory", System.Web.Http.Tracing.TraceLevel.Info,
 (t) =>
 {
 t.Operation = request.Method.Method;
 t.Operator = Thread.CurrentPrincipal.Identity.Name;
 t.Message = requestMessage + Environment.NewLine + responseMessage;
 });
 
 
 return response;
 }
} 

Caution■■  I t is better to move the security audit files created by the web application into some other network location
by a periodic batch or an offline process. When the web server is compromised, the attacker will not be able to get to
the security audit files. Also, the account running the worker process must never be given the privilege to delete any of
these files.

Input Validation
Input validation is relevant to ASP.NET Web API as well, although the inputs here are not direct user entries. One of
the basic things to do in this area is to define the data types of the variables or properties accurately so that model
binding itself will fail in the case of invalid or malicious inputs.

In addition, the web API does support validation annotations, just like ASP.NET MVC. Data annotations are
attributes that are a part of the System.ComponentModel.DataAnnotations namespace. Required, StringLength
RegularExpression, Range, and Email are some of the out-of-the-box attributes available to help us with the input
validation. It is possible to create our own custom attributes as well, in case the validation needs are not met by the
out-of-the-box attributes.

After the model binding, if any of the inputs are not valid there will be errors in the model state. We can check for
errors by inspecting ModelState.IsValid. If this is false, the request can be rejected on the grounds of a bad request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Security Vulnerabilities

373

Summary
In this chapter, I covered the OWASP top ten vulnerabilities for the year 2013 from the perspective of ASP.NET Web
API. Some of them are not applicable to ASP.NET Web API, the most notable one being XSS. Some of them are
applicable to ASP.NET Web API as with any other application and do not deserve special mention. The following list
shows the most relevant subset of the OWASP Top Ten.

•	 Injection: A SQL injection is applicable to ASP.NET Web API, just as with any other UI-based
application. In addition, there is another form of injection vulnerability possible with ASP.
NET Web API: overposting. Using a view model, which is different from an entity model, helps
prevent overposting.

•	 Insecure Direct Object References: RESTful URIs can be hacked, and ASP.NET Web API
lends itself well for a user to manipulate a URI or the input. Fine-grained authorization is the
solution to prevent this vulnerability.

•	 Missing Function Level Access Control: Implementing a sound authorization mechanism
for all API calls is important to prevent this vulnerability. A global message handler or a filter
that runs for all the calls and controls the access based on the claims using the subclass of
ClaimsAuthorizationManager is the best approach to prevent this vulnerability in ASP.NET
Web API.

•	 Cross-Site Request Forgery (CSRF): CSRF is applicable not just for cookies, but also for
credentials cached by the browser for basic authentication and Windows authentication.
If cookies must be used with ASP.NET Web API, an antiforgery token can be employed to
prevent CSRF.

•	 Unvalidated Redirects and Forwards: This vulnerability is not applicable to ASP.NET Web
API, but it is worth noting the redirects that happen in OAuth 2.0. If you implement the OAuth
2.0 authorization server, ensure you validate the redirect URI in the requests.

Application security is a combination of hardware and software security with well-defined processes backing
them. Hardware includes all the infrastructure aspects including networking components such as servers, firewalls,
routers, and so on. Software includes the system software such as the operating system as well as application software,
which includes the software you develop and third-party software. Equally important are the processes around
hardware and software to ensure application security remains at the required level over the lifetime of the application.

From a programmer’s perspective, input validation and logging or auditing are important to ensure security.
Model binding and data annotations help a developer validate the input data. ASP.NET Web API has out-of-the-box
support for tracing, which can be used to trace, log, and create audit logs.

www.it-ebooks.info

http://www.it-ebooks.info/

375

Appendix

ASP.NET Web API Security Distilled

This appendix is a grand summary of this book, a recap of the various security mechanisms we have seen so far.
There is no good or bad mechanism in an absolute sense. The idea of this book is to present all the mechanisms and
let you decide based on your needs.

There is no mandate that you must select only one mechanism. You can design your web API to support more
than one and give client applications a few options. The ASP.NET Web API pipeline helps us plug in as many handlers
as we need to run. Message handlers are great enablers for achieving that goal.

If you decide to choose more than one, carefully consider the possibilities. For example, if you mix basic
and digest authentication and decide to use HTTPS only for basic authentication, there is a risk of a malicious
man-in-the middle (MITM) removing the WWW-Authenticate: Digest response header and tricking the client into
sending the credentials in a basic scheme in clear text.

Mechanism When to Use? Merits Demerits

Forms
Authentication
(Chapter 2)

Use when the client consuming
the web API is an ASP.NET
web application and the same
IIS application hosts the web
application and web API so that
the same authentication ticket
can be reused. A great example
of this scenario is Single Page
Applications (SPAs) where the
single page and the web API
backing the scripts can be hosted
in the same IIS application.

Easy to use and familiar to
ASP.NET developers. Same
authentication mechanism
for both the web application
and the web API.

Forms authentication
mechanism developed mainly
for web applications rather
than a web API. Cannot be
used for a standalone web API.
Forms authentication is based
on an authentication ticket
stuffed into a cookie that gets
shunted up and down. Cookies
are generally frowned upon in
the REST- style architectures
that celebrate statelessness.

(continued)

www.it-ebooks.info

Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

Appendix ■ ASP.NET Web API Security Distilled

376

Mechanism When to Use? Merits Demerits

Basic
Authentication
(Chapter 8)

Use when a simple user ID and
password-based mechanism must
be used and HTTPS can be used.
This is typically the case when the
client is not very sophisticated
to use other mechanisms but
has support for HTTP from the
platform in the form of a library or
otherwise to manipulate the HTTP
request header as well as the ability
to base64-encode strings and use
transport security in the form of
HTTPS. The server hosting the web
API must support HTTPS as well.

Simple, lightweight, and
supported by the HTTP
specification.

HTTPS is a must. Susceptible
to CSRF, when the client
is browser based such as a
JavaScript library.

Digest
Authentication
(Chapter 8)

Use when a user ID and
password-based mechanism
must be used but HTTPS cannot
be used. This is the case when
the client does not have support
from the platform to use transport
security or the server side hosting
ASP.NET Web API does not support
HTTPS for a reason. The client
must have the capability to create
an MD5 hash, generate an arbitrary
number (nonce), and track and
increment the nonce counter.

HTTPS is not a must. HTTP
specification supported.
Password is never
transmitted over the wire.

Too complex, especially for a
client to implement. Uses MD5
hashing, which is outdated.
Needs client cooperation in
terms of incrementing a nonce
counter.

Windows
Authentication
(Chapter 8)

Use when both the client and
server sides run Windows OS
and all the end users will have
a Windows account and clients
and the server are in the same
network (intranet).

Simple and easy because
ASP.NET and IIS establish
the identity for you, without
a line of code. Impersonation
capabilities.

Susceptible to CSRF, when
the client is browser based
such as a JavaScript library.
Reliance on Microsoft stack
limits the reach of a web API.
May not work over HTTP proxy
and hence is better suited for
intranet only.

Preshared
Key or API
Key-Based
Authentication
(Chapter 9)

Use when a web API wants to
establish the identity of the client
but does not need to authenticate
the identity. This is the case when
an API deals with less sensitive
data. Also useful when the client
application making the API call
needs to identify itself to an API
regardless of user identity. When a
more secure mechanism is required
with a need to authenticate in
addition to just identifying the
client, a dual PSK can be used.

HTTPS is not a must. Easier
to encrypt payload, either the
whole payload or selectively,
using PSK. There is no cost
associated with buying any
certificates.

Slightly complex mechanism to
implement. An out-of band
exchange of keys is a
consideration for application
administration as well as
security. Requires both parties
to safeguard the PSK effectively.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix ■ ASP.NET Web API Security Distilled

377

Mechanism When to Use? Merits Demerits

X.509 Client
Certificate-
Based
Authentication
(Chapter 9)

Use when HTTPS is a given
and the web API has extremely
sensitive information needing
ownership-factor-based security
in addition to or instead of the
typical user ID and passwords.

A certificate, being a file,
can be closely guarded by IT
systems and unauthorized
sharing can be prevented,
unlike with passwords or
keys. The web API usage
can be limited to only
those machines on which
the certificate is installed.
Can combine with other
mechanisms to achieve
two-factor authentication
for enhanced security.

CA-issued certificates cost
money. Managing certificates
is an administration overhead.
HTTPS is a must. Can get
stifling at times, because the
web API can be accessed only
from the machines with a client
certificate.

SAML
Token-Based
Authentication
and
Authorization
(Chapter 9)

Use when the token issuance
infrastructure such as AD FS
or some other STS is already in
place and must be leveraged for
securing the web API.

Windows Identity Foundation,
which is now a part of .NET
Framework 4.5, has great
out-of-the-box support
for issuing and validating
SAML tokens and the related
WS-* protocol WS-Trust.
Makes it possible to leverage
investments in existing
infrastructure. AD FS can
map Windows groups to
claims that can be used for
authorization.

SAML is XML and hence SAML
tokens tend to get heavier
compared to web tokens such
as SWT or JWT. Forcing clients
to talk to WS-Trust endpoints
to get an SAML token reduces
the reach of the web API.
A client not having the ability
to use WS-Trust protocol will
pretty much be not able to use
the web API.

SWT-Based
Authentication
and
Authorization
(Chapter 10)

Use when direct presentation
of credentials by the client to
the web API is not suitable
and brokered authentication is
preferred through a common
trusted service. The token
contains claims and hence
is suitable for claims-based
architectures. Azure ACS
supports issuance of SWT, and
hence this mechanism is great to
use with Azure ACS.

Simple and lightweight token
format. Authenticity ensured
through HMAC signatures.

SWT cannot be encrypted and
hence HTTPS is a must if token
confidentiality is required.
Using Azure ACS cannot be the
sole motivating factor for using
SWT, because the only major
WS-Trust provider supported
by ACS is AD FS.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix ■ ASP.NET Web API Security Distilled

378

Mechanism When to Use? Merits Demerits

JWT-Based
Authentication
and
Authorization
(Chapter 10)

Use when direct presentation
of credentials by the client to
the web API is not suitable and
brokered authentication is
preferred through a common
trusted service. The token
contains claims and hence
is suitable for claims-based
architectures. Azure ACS supports
issuance of JWT and hence this
mechanism is great to use with
Azure ACS.

Simple and lightweight token
format. JWT supports both
signing (JWS) and encryption
(JWE). JSON goes well with
JavaScript clients.

Slightly complex to implement,
especially JWE.

Google
Authenticator
OTP-Based
Authentication
(Chapter 14)

Use when additional security in the
form of two-factor authentication is
required on a need basis for certain
business-critical requests made to
the web API.

Uses a standard HOTP/
TOTP algorithm and there is
nothing proprietary. There
is no cost associated, unlike
other tokens such as RSA.

Needs a smartphone
running iOS, BlackBerry, or
Android. Reliance on Google
Authenticator application.
Mobile phone is not the
ownership factor but only a
base32-encoded easy-to-type
(and hence easy-to-remember)
secret key.

SMS-Delivered
OTP-Based
Authentication
(Chapter 14)

Use when additional security in the
form of two-factor authentication is
required on a need basis for certain
business-critical requests made to
the web API.

Simple and supports any
mobile phone capable of
receiving SMS, with the
mobile phone itself used as
ownership factor, unlike PSK
with Google Authenticator.

User has to wait for SMS to
arrive. Costs associated with
sending SMS. Privacy concerns
around sharing mobile number.

OAuth 2.0
Access
Token-Based
Authentication
and
Authorization
(Chapters11, 12,
and 13)

Use when the web API is based
on a web application in that the
user registers and thereby has a
user ID and password to access
the application that can be
leveraged to authenticate to the
web API. The client is also a web
application (typically).

OAuth 2.0 is a standard meant
for the REST world, along the
lines of WS-Trust and
WS-Security in the SOAP
world. Getting and presenting
a token as defined by a
standard is always better than
creating one’s own standard.

Slightly complex to implement,
although the open source
library DotNetOpenAuth
is available to help in
implementation. HTTPS is a
must for bearer tokens.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix ■ ASP.NET Web API Security Distilled

379

OAuth 2.0 Grant Type When to Use? Merits Demerits

Authorization Code-
Based Grant

Use when the client
application is a
server-side web
application such as
ASP.NET running
in IIS.

Long-lived refresh token
is available. Both access
and refresh tokens are not
exposed to the browser or
the end user, ensuring token
confidentiality.

Refresh token has advantages
but it introduces an element of
risk related to refresh tokens
stored in the data store getting
compromised. Also, the flow
is slightly complex, with the
additional step of exchanging an
authorization code for a token.

Implicit Grant When the client runs
within the context of a
web browser such as
JavaScript.

Flow is simple. No refresh
tokens and hence security
risk or exposure is limited.
Three-legged authentication
supported by implicit grant
flow is one of the best ways, if
not the best from the security
standpoint, for JavaScript
clients to talk to a web API.

No token confidentiality;
browser has access to the token
and so does the end user. Refresh
tokens are not supported, which
means as and when tokens
expire, flow has to be repeated to
obtain a new token.

Resource Owner
Password-Based
Grant (To be used
only when other flows
are not viable)

When the client
application is also
from the same
organization owning
the resource server, or
in other words, a first-
party application.

Flow is very simple: Just
exchange the user ID and
password for a token.

Password exposed directly to
the client application. There is
risk associated with the client
application not being diligent
with handling the password. For
example, a client application
storing the password
somewhere is a big risk.
Password must be immediately
exchanged for a token and never
stored for future use.

Client
Credentials-Based
Grant (Two-legged)

For scenarios where
a protected resource
is not user specific or
the user has consented
to provide access
to the protected
resource outside of the
OAuth flow, might be
through an out of band
process.

User need not be bothered to
provide authorization every
time the protected resource
has to be accessed. For this
reason, this is referred to
as two-legged (the third leg
being the user).

Although it can be a slight
irritant, user involvement in
authorizing access is always
better from a security standpoint
and hence this grant type is
comparatively riskier.

The right approach in securing ASP.NET Web API is choosing the appropriate mechanism for your
organizational and application needs, rather than being influenced by others. For example, do not use OAuth 2.0 just
because others use it.

A great thing about ASP.NET Web API and the .NET Framework in general, with claims-based identity, is that you can
plug in new authentication and authorization methods and yet keep the application resistant to the effects on account of
these changes. New message handlers can be plugged in to handle new authentication methods and ultimately, if the web
API works based on claims, it just boils down to handlers creating appropriate claims for the identity.

www.it-ebooks.info

http://www.it-ebooks.info/

381

Index

n A, B
Active Directory Federation Services (ADFS), 187
Additional authenticated data (AAD), 213
ANONYMOUS ACCESS, 34
aspnet_regiis Commands, 356
ASP.NET Web API, 1

ApiController, 4
ASMX web service, 2
common gateway interface (CGI), 1
CRUD operations, 2
define, 1
extensibility (see Extensibility)
file transfer protocol (FTP), 1
framework for RESTful, 4
hyper text markup language (HTML), 1
internet, 1
JavaScript Object Notation (JSON), 3
Microsoft Message Queuing (MSMQ), 2
MVC programming, 4
object oriented programming language, 2
ownership factors, 163

client certificate, authentication, 172
preshared key (PSK), 163
SAML tokens, 181
server vs. client certificate, 171
X.509 client certificate, 170

plain old XML (POX), 2
RESTful

HTTP methods, 3
POST method, 4
resource identifier, 3
uniform resource identifier (URI), 3
uniform resource locator (URL), 4

sample, 4
security mechanisms

Basic Authentication, 376
Digest Authentication, 376
Forms Authentication, 375

Google Authenticator OTP-Based
Authentication, 378

JWT-Based Authentication and
Authorization, 378

OAuth 2.0 Access Token-Based
Authentication and Authorization, 378

Preshared Key/API Key Based Authentication, 376
SAML Token-Based Authentication and

Authorization, 377
SMS-Delivered OTP-Based Authentication, 378
SWT-Based Authentication and

Authorization, 377
Windows Authentication, 376
X.509 Client Certificate Based

Authentication, 377
security primer

authentication, 9
authorization, 9
availability, 9
CIA hierarchy, 8
confidentiality, 9
identification, 9
information security, 8
inherence, 9
integrity, 9
knowledge, 9
OAuth, 9
open web application security project

(OWASP), 9
overview, security, 10
ownership, 9
security auditing, 10
two factor authentication (TFA), 9

shining scenarios
deployment of API, 8
global system for mobile (GSM), 7
GSM modem, 7
native mobile and nonmobile applications, 6
platform for Internet of Things (IOT), 7

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

382

rich client web applications, 6
service layer, 7
Silverlight apps, 7
stack, 7
user interface channel, 6

simple mail transfer protocol (SMTP), 1
simple object access protocol (SOAP), 2
vs. WCF

ASP.NET Web API way, 6
framework, 4
HTTP method, 6
programming model, 5
REST starter kit, 5
WCF way, 5

web API, 2
web applications, 1
web services, 2
web services definition language (WSDL), 2
world wide web, 1
XML response, 2

Asymmetric keys
encrypting message, 110
signing message, 114
vs. Symmetric keys, 104

Authorization server, DNOA, 294
components, 294
infrastructure classes

class implementation, 296
ClientAuthorization, 297
Client Class, 298
CryptoKeyStore Class, 300
DataStore, 295–296
Nonce Class, 299
NonceStore and Nonce Classes, 299
SymmetricCryptoKey Class, 300

OAuth20Controller, 306
authentication, 309
AuthorizationRequest View Model, 307
Index Action Method (HTTP GET), 306
Index Action Method (HTTP POST), 308
Token Action Method, 309

IAuthorizationServerHost implementation, 301
Azure Access Control Service (ACS), 200

n C
Claims-based access control (CBAC)

control, 90
implementation, 92

Client certificate
API pipeline, 178
authentication, 172
create and configuration, 175
enabling HTTPS, IIS in, 173

IIS manager, 174
merits and demerits, 180
PVK2PFX command line, 177
testing, 179
X.509 certificate, ASP.NET web API, 179

ComputeHash method, 353
Console application

encryption, JSON web token, 214
AsymmetricKey method, 215
data authentication, 220
encryptedPayload class, 216
JsonWebEncryptedToken, 216
master key, 219
Parse method, 221
supporting classes, 215
ToString method, 219

JSON web token, 203
KeyIssuer class, 204
Parse method, 211
partial implementation, 208
RelyingParty class, 205
serialization and deserialization, 207
TokenIssuer class, 205
ToString method, 210

SWT, 193
claims and addclaim method, 197
client application, 194
parse method, 199
RelyingParty, 195
TokenIssuer class, 194
ToString method, 198

Cross-site request forgery (CSRF)
authentication

ApiController creation, 360
ASP.NET Web API, 359
BadController, 361
GET and POST request, 362
HomeController, 360

cookies
AntiForgeryTokenHandler, 365
antiforgery token, 364
ASP.NET MVC, 362
fundamental assumption, 363
GET request, 362
HomeController, 364, 365
HTML page, 362
HTTP response, 362
message handler, 364
MVC antiforgery, 363

web browser, 359
Cross-site scripting (XSS), 350–351
Cryptographic handling, WIF in, 115–116

token encryption, 116
token signing, 117

Customozing STS. (see Security token service (STS))

ASP.NET Web API (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

383

n D
Data exposure

motion
ASP.NET Web API Response, 357–358
cryptography, 356
HTTPS, 356
MITM attacks, 357
OAuth specifications, 356

rest
encrypting Web.config, 355–356
encryption algorithm, 352
hashing passwords, 352–354
Data exposure

Denial of service (DOS), 367
Department of Motor Vehicles (DMV), 89
DotNetOpenAuth (DNOA), 283

ASP.NET MVC 4.0 project
MyContacts, 284
MyPromo, 284–285
authorization server, 294

HTTP transactions, 286
Promotion Manager, 287
Promotion Manager web application. (see

Promotion Manager web application)
implicit grant, 313
NuGet Packages, 290
Resource Server, 311

n E, F
Employee View Model, 350
Encryption

asymmetric keys, 110
cryptography, 103

Hash-based message authentication
code, 107

message authentication code, 108
and signing, 103
symmetric keys, 105, 107
symmetric vs. asymmetric keys, 104

ETag, 53
ActionFilter, 54–55
ASP.NET Web API, implementation in, 53
concurrency management, 57–58
testing, ActionFilter, 55

Extensibility, 29
ApiController, 29
application specific code, 29
ASP.NET Web API, 30

ExecuteAsync() method, 32
handler pipeline, 31
HttpControllerRouteHandler, 30
HttpRoutingDispatcher, 31
life cycle, 31

filters
action, authorize filter, 32
ActionFilter, 34
anonymous access, 34
authorize, 32
subclasses authorize, 33

handlers, message
Chinese boxes of, 35
DelegatingHandler, 35
DelegatingHandler class, 34
ExecuteAsync() method, 34
HttpServer, 34
multiple route handler, 37
.NET framework, DelegatingHandler, 36
route specific handler, 37
single route handler, 37

HTTP processes, 29
security implementation, 29

n G
GET Action Method, 346

n H
Hash-based message authentication code

(HMAC), 107
HTTP, 41

cookies, 66
and ASP.NET Web API, 67
and ASP.NET Web API, HttpOnly, 68
JavaScript Accessing Cookie, 68

Cross-Origin Resources (CORS), 59
CORS GET-MCV view, 60
CORS GET-web view, 61
preflighted request. (see Preflighted request)
Visual Studio development server, 60

entity tag(ETag). (see ETag)
fiddler, 74

ASP.NET web application, 75
capture and decrypting HTTPS, 75
client communication to HTTPS, 78–79
composer, 45
internet explorer, 75
MITM attack, 77
.NET Framework WPF application, 75

HTTPS, 71
ASP.NET Web API Hosted in IIS, 73
handshake process, 72
loopholes of, 72

method overriding, 44
methods, 43
proxy server, 70–71
request, 42
request headers, 43

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

384

request message, 44
response, 45
response body, 49
response header, 48
status codes, 46

HttpResponseException, 47
unhandled exception, 47

transaction, 41
web caching, 50

cache control, 50
home/Index view, 51

Hypermedia as the Engine of Application State
(HATEOAS), 18

n I, J
IAuthorizationServerHost implementation, 301

CreateAccessToken method, 304
IsAuthorizationValid Method, 303
ServerHost Class, 301
Signing and encryption keys distribution, 303
WebApiApplication, 304

Identity management, 81
authentication, 81
authorization, 81
claims-based ASP.NET Web API,

implementation, 94
claims-based security

CBAC vs. RBAC, 90
real-world analogy, 89
relying party, 88
security token services, 88

and principal, 83
role-based access control, implementation, 91
role-based security, 82

console application, windows application
in, 85–86

and principal, 82
WinForm application, generic identity

in, 83, 85
security token, 98

claim properties, 98
token formats, 99, 101

using claims, 90
claims-based access control,

implementation, 92
Integrated Windows Authentication (IWA), 156

n K
Knowledge factor security, 133

active directory, 133
basic access authentication, 133
basic authentication, 133

in ASP.NET Web API, 134
authorize filter, 134, 137
browser dialog, 139
C# client, testing, 138
demerits, 139
error handling, 135
error processing, 136
handler registration, 137
handling responses, 135
header from client, 134
HTTP specification, 133
implementation, 134
merits, 139
message handler, 135
request handle, 135
request processing, 135
response from server, 134
response processing, 136
scheme, 139
status code from server, 133
testing, 138

digest access authentication, 133
digest authentication, 140, 142

AuthenticationHandler, 144–145
authorization header, 148, 155
bolts, 140
to break, 152
Brute force method, 155
checks for, 143
classes, 144
constructor, header, 149
defense security, 142
demerits, 152
details of implementation, 145
fiddler requests, 153
hash calculator, 154
HashHelper, 144
header, 141, 144
header class, 154
IE pop up box, 151
implementation of, 144
man-in-the-middle (MITM)

attacks, 142
MD5, 141, 147
mechanisms, 143
merits, 152
message handler, 148
nonce, 144, 146
nuts, 140
password generation, 153
process, implementation, 144
replay of requests, 153
status, unauthorized code, 145
testing, 151
ToString method, 147

HTTP (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

385

unauthorized response, 140
unauthorized response generation, 146
validation of nonce, 150

Kerberos, 133
NTLM protocols, 133
Windows authentication, 133, 156

API test client, 161
changes of configuration, 156
configuration of, 156
DefaultAuthenticationModule, 158
demerits, 161
HTTP transactions, 158
IIS manager, 157
impersonations, 159
Kerberos authentication, 160
merits, 161
performance of, 157
RFC 2617 authentication, 162
temporary impersonations, 160
testing, 160
WindowsAuthenticationModule, 158
WindowsPrincipal, 156

n L
Live Connect APIs, 234

application registration, 234
ASP.NET MVC application

testing, 238
authorization code grant, 239
client credentials grant, 249
IIS server, 237
implicit grant, 235
resource owner password grant, 247

n M, N
Message Digest algorithm, 352

n O
OAuth 2.0, 227, 251

access token, 232
App-to-App data sharing, 227
authorization grant types, 230

client credentials grant, 231
code grant, 230
implicit grant, 231
resource owner password

grant, 231
authorization server, 267

applicationRegistry dictionary, 268
Authenticate action method, 273
authorization code request, 268
codesIssued dictionary, 269

HTTP GET, 270
HTTP POST, 268, 274
token request, 268

client profiles
native application, 230
user agent-based application, 229
web application, 229

client types
confidential clients, 229
public clients, 229

Contacts Manager application, 258
Contact Class, 262
HomeController Class, 259
Login Action Method, GET, 259
Login Action Method, POST, 260
LoginRequired Filter, 259
Login View, 260
Visual Studio configuration, 258

DNOA. (see DotNetOpenAuth (DNOA))
grant types

Authorization Code-Based Grant, 379
Client Credentials-Based Grant, 379
Implicit Grant, 379
Resource Owner Password-Based

Grant, 379
Live Connect APIs, 234

application registration, 234
ASP.NET MVC application testing, 238
authorization code grant, 239
client credentials grant, 249
IIS server, 237
implicit grant, 235
resource owner password grant, 247

vs. OPENID, 228
OpenID Connect, 282
Promotion Manager, 227
Promotion Manager application, 251
refresh token, 233

performance, 234
security, 233

resource server, 277
roles, 228

Authorization Server, 229
Client, 229
Resource Owner, 228
Resource Server, 229

security considerations, 280
valet parking analogy, 228
web application and Web API, 229

OnActionExecuted method, 357
Open Web Application Security Project (OWASP)

authentication and session management, 350
components, 367
cross-site scripting, 350–351
direct object insecure, 351

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

386

missing function level access control, 358
overposting, 348–349
redirects and forwards, 367
security misconfiguration, 351
SQL injection, 346–347
Cross-site Request forgery (CSRF). (see Cross-site

Request forgery (CSRF))
data exposure, (see Data exposure)

n P, Q
Password-Based Key Derivation Function 2

(PBKDF2), 353
Preflighted request, 63

ASP.NET Web API, implementation in, 64
delegating handler, 65
JQuery, 64
web API, 65

Preshared Key (PSK), 163, 323
implementation, 167

delegating handler, 169–170
Shared key generation, 167

security mechanism, 164
identifier misuse, 165
man-in-the-middle (MITM), 165–166
merits/demerits, 170
replay attack, 165

Promotion Manager, 228
Promotion Manager application, 263

ASP.NET MVC 4.0 projects
MyContacts, 253
MyPromo, 253–254

design, 253
HTTP transactions, 255
sharing contact information, 251

ContactsManager flow, 252
OAuth 2.0 roles, 251
PromotionManager flow, 252

Promotion Manager web application, 291
HomeController, 291

Exchange action method, 293
Index action method, 292

PUT Action Method, 349

n R
ReadAsStringAsync method, 371
Relying party (RP), 88
Representational State Transfer (REST), 13
RESTful services

cache constraint, 13
client/server constraints, 13
constraints, 13
hypermedia as engine, 18
implement and consume API

EmployeesController-ASP.NET, 21
JQuery, Get Employee, 22
MVC project, 20
user interface listing, 23
ValuesController, 21
web template, 20

layered constraint, 13
manipulate, resource representation, 15

DELETE, 15–16
GET, 16
POST, 15–16
PUT, 15
resource manipulation, 15–16
security in API
sequence diagram, forms, 25

OutputCache attribute, 13
Representational State Transfer (REST), 13
resource identification

URI representation, 14
web services, 14

security in API
authentication, forms, 23
cross site request forgery

(CSRF), 28
filter authorizing, 27
FormsAuthenticationModule, 24
GlobalFilterCollection, 27
HttpFilterCollection, 27
index view, LoginController, 26
login controller, 26
sequence diagram, forms, 25
Thread.CurrentPrincipal, 27
UrlAuthorizationModule, 24

self descriptive messages, 16
JSON representation, 17
Mix and Match, 18
No Content Type, 17
XML representation, 17

stateless constraint, 13
uniform interface constraints, 13–14

Role-based access control (RBAC), 82
control, 90
implementation, 91

Role-based security, 82

n S
SAML Tokens, 181

active directory federation services
(ADFS), 187

ASP.NET web API, accept, 184
client console application,

implementation, 182
merits and demerits, 188

Security. (see Knowledge factor security)
Security Hash Algorithm (SHA-1), 352

Open Web Application Security Project (OWASP) (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

387

Security token service (STS), 119
customized building of

certificate generation, 125
console application, 128
custom classes of, 130
CustomUsernameTokenHandler, 127
GetOutputClaimsIdentity method, 127
GetScope() method, 126
main method, 129
Makecert tool, 125
Scope class, 126
subclass creation, 125
System.IdentityModel.SecurityToken

Service, 125
Windows Communication Foundation, 125
WSTrustServiceHost, 129

token request
channel factory creation, 131
endpoint creation, 131
message security, 130
request for, 131
SAML token, 132

web services trust
authentication, brokered, 120
bearer token, 123
brokering, 120
check for proofs, 123
direct authentication, 120
elements, RSTR, 121
Kerberos tickets, 119
key holder, 123
ownership verification, 124
possession proof, 122
proof key, 124
public key, 123
request-response pair, 120
request security response (RSTR), 120, 122
request security token (RST), 120–121
RST and RSTR, 120
security tokens, 119
SOAP, 119
symmetric key, 123
token holder, key, 123
WEB SERVICES FEDERATION, 125
WS-STAR, 119
X.509 certificates, 119
XML, 119

Security token(s), 191
JSON web token, 200

anatomy of, 202
anatomy of encryption, 212
authentication encryption, 212
Base64 URl encoding, 201, 202
console application, 203
encrypt JWT, 214

relying party, 191

Security Markup Assertion Language
(SAML), 191

simple web token, 191
anatomy of, 192
console application, 193
SWT decoded content, 193

Security vulnerability
auditing, 370
countermeasure, 345
cross-site request forgery. (see Cross-site request

forgery (CSRF))
definition, 345
hardware and software process

countermeasure, 367
default denial, 368
defense in depth, 368
DOS attack, 367
least privilege, 368
IIS, 368
Web Server Fingerprinting, 368–369

input validation, 372
JavaScript, 366
logging, 370
OWASP application, 345

authentication and session
management, 350

components, 367
cross-site scripting, 350–351
CSRF, 366
data exposure. (see Data exposure)
direct object insecure, 351
missing function level access control, 358
overposting, 348–350
redirects and forwards, 367
security misconfiguration, 351
SQL injection, 346–347

tracing
ApiController, 371
definition, 370
ITraceWriter interface, 370–371
TracingHandler, 372

web API, 366
hardware and software process

SELECT SQL statement, 346
Service-level agreement (SLA), 370
Signing

asymmetric keys, 114
and encryption, 103
symmetric keys, 107
token encryption, 115

Structured Query Language (SQL), 346
Symmetric keys

encrypting message, 105
signing message, 107
vs. Asymmetric keys, 104

Systems development life cycle (SDLC), 370

www.it-ebooks.info

http://www.it-ebooks.info/

﻿■ Index

388

n T
Token encryption

cryptographic handling, WIF in, 115
and signing, 115

Two-Factor Authentication (TFA)
Blanket TFA implementation

authentication handler, 321
HTTPS, 320
401 response, 322

constant per request
basic authentication handler, 333
class, TOTP, 335
code validation, 335
TOTP codes, 334
TransfersController, 333, 337
TwoFactorAttribute, 336

Google authenticator, 327
account addition, 324
Alice performance, 323–325
Base32 Alphabet, 327
Base32 decoding, 327, 329–330
Base32 encoding, 327–328
Chrome’s GAuth authenticator, 333
code, 325
code generation, 323
counter value, 326
generation of code, 326–327
generator, HOTP, 331
HMAC based one time password, 323
Hood of, 325
HOTP algorithm, 325–326
HOTP generation, 330
key generation, 328

performance of TOTP, 332
preshared key (PSK), 323
secret key, 326
test, TOTP, 331
time based one time password, 323
ToBase32String extension method, 329
tokens, 323
TOTP algorithm, 330
TOTP generator, 331
user perspective, 323

to implement
authentication code, token generated, 319
Blanket TFA, 320
Pre-request TFA, 320
RSA token, 319
tokens, 319

on demand per request
ClaimsAuthorizationManager, 339
index view, 340
message handler, 337
POST method, 340
registring handler, 337
TotpHandler, 338

security through mobiles, 341

n U, V
Universal Coordinated Time (UTC), 192

n W, X, Y, Z
Web Resource Authorization Profiles (WRAP), 232
Windows Identity Foundation (WIF), 103, 193. (see also

Security token service (STS))

www.it-ebooks.info

http://www.it-ebooks.info/

Pro ASP.NET Web
API Security

Securing ASP.NET Web API

Badrinarayanan Lakshmiraghavan

www.it-ebooks.info

http://www.it-ebooks.info/

Pro ASP.NET Web API Security

Copyright © 2013 by Badrinarayanan Lakshmiraghavan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5782-0

ISBN-13 (electronic): 978-1-4302-5783-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Developmental Editor: Barbara McGuire
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Mark Powers
Copy Editor: Teresa Horton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com/9781430257820. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781430257820
http://www.apress.com/source-code/
http://www.it-ebooks.info/

To Him, who is able to be both larger than the largest and smaller than the smallest.

To my mother and father.

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

Foreword � �� xv

About the Author �� xvii

About the Technical Reviewer � ��� xix

Acknowledgments ��� xxi

Introduction � ��� xxiii

■Chapter 1: Welcome to ASP�NET Web API � �����������������������������1 What Is a Web API, Anyway? �

..1

A Primer on RESTful Web API �...3

Hello, ASP�NET Web API!�..4

WCF vs� ASP�NET Web API � ..4

Programming Model Differences �..5

Scenarios in Which ASP�NET Web API Shines �...6

A Primer on Security �..8

Summary �..11

■Chapter 2: Building RESTful Services ������������������������������������13 What Is a RESTful Service? �

..13

Identification of Resources �...14

Manipulation of Resources Through Representations �..15

Self-Descriptive Messages �...16

Scenario 1: JSON Representation � ...17

Scenario 2: No Content Type � ...17

Scenario 3: XML Representation� ...17

Scenario 4: Mix and Match � ...18

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

viii

Hypermedia as the Engine of Application State���18

Implementing and Consuming an ASP.NET Web API���19

Our First Attempt in Securing a Web API��23

Summary��28

Chapter 3: Extensibility Points■■ ���29

The What and Why of Extensibility Points��29

ASP.NET Web API Life Cycle��30

Filters���32

Authorize Filter��� 32

Subclassed Authorize Filter�� 33

ActionFilter��� 34

Message Handlers��34

HTTP Modules ���38

Summary��40

Chapter 4: HTTP Anatomy and Security■■ ��41

HTTP Transaction��41

HTTP Request���42

Request Headers��43

HTTP Methods��43

Method Overriding ���44

HTTP Response��45

Status Codes��46

The Curious Case of an Unhandled Exception�� 47

Response Headers���48

Response Body���49

Web Caching��50

Entity Tag ���53

Implementing ETag in ASP.NET Web API��� 53

Testing ETag ActionFilter�� 55

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

ix

ETags for Managing Concurrency��� 57

Cross-Origin Resource Sharing��59

Simple CORS��� 59

Preflighted Request�� 63

HTTP Cookies���66

Cookies and ASP.NET Web API�� 67

Proxy Server���70

HTTPS���71

Configuring HTTPS for ASP.NET Web API Hosted in IIS��� 73

Fiddler: A Tool for Web Debugging��74

Capturing and Decrypting HTTPS Traffic��� 75

Fiddler as Man-in-the-Middle��� 77

Summary��79

Chapter 5: Identity Management■■ ��81

Authentication and Authorization���81

Role-Based Security���82

Identity and Principal�� 82

Using Generic Identity in a WinForms Application�� 83

Using Windows Identity in a Console Application��� 85

The Curious Case of Thread.CurrentPrincipal���87

Claims-Based Security���88

Real-World Analogy�� 89

Claims-Based Access Control vs. Role-Based Access Control��� 90

Using Claims-Based Security���90

Implementing Role-Based Access Control Using Claims�� 91

Implementing Claims-Based Access Control Using Claims�� 92

Implementing Claims-Based ASP.NET Web API��94

Security Token��98

Token Formats�� 99

Summary��101

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

x

Chapter 6: Encryption and Signing■■ ���103

Cryptography��103

Encrypting a Message Using Symmetric Keys���105

Signing a Message Using Symmetric Keys��107

Encrypting a Message Using Asymmetric Keys���110

Signing a Message Using Asymmetric Keys��114

Token Encryption and Signing��115

Comparison to Cryptographic Handling in WIF��� 115

Summary��117

Chapter 7: Custom STS through WIF■■ ���119

WS-Trust���119

Trust Brokering��� 120

The Request–Response Pair of RST and RSTR��� 120

Proof of Possession�� 122

Building a Custom STS���125

Requesting a Token from a Custom STS��130

Summary��132

Chapter 8: Knowledge Factors■■ ���133

Basic Authentication��133

Implementing Basic Authentication in ASP.NET Web API�� 134

Testing Basic Authentication�� 138

Merits and Demerits of Basic Authentication��� 139

Digest Authentication���140

The Nuts and Bolts��� 140

Implementing Digest Authentication�� 144

Testing Digest Authentication��� 151

Merits and Demerits of Digest Authentication�� 152

Trying to Break Digest Authentication�� 152

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xi

Windows Authentication���156

Configuring Windows Authentication�� 156

Windows Authentication in Action�� 157

Impersonation��� 159

Testing Windows Authentication��� 160

Merits and Demerits of Windows Authentication�� 161

Summary��162

Chapter 9: Ownership Factors■■ ��163

Preshared Key��163

Designing a Preshared Key Security Mechanism��� 164

Implementing the Preshared Key Design��� 167

Merits and Demerits of a Preshared Key�� 170

X.509 Client Certificate���170

Server Certificate vs. Client Certificate�� 171

Using Client Certificate for Authentication in ASP.NET Web API�� 172

Merits and Demerits of a Client Certificate Mechanism��� 180

SAML Tokens��181

Implementing the Client Console Application��� 182

Accepting a SAML Token in ASP.NET Web API �� 184

Active Directory Federation Services��� 187

Merits and Demerits of SAML Tokens��� 188

Summary��189

Chapter 10: Web Tokens■■ ���191

Simple Web Token ���191

Anatomy of a SWT�� 192

Using a SWT in a Console Application�� 193

JSON Web Token��200

Base64 URL Encoding��� 201

Anatomy of a Signed JSON Web Token��� 202

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xii

Using a Signed JSON Web Token in a Console Application��� 203

Anatomy of an Encrypted JSON Web Token�� 212

Using an Encrypted JSON Web Token in a Console Application�� 214

JWT Handler ��223

Summary��225

Chapter 11: OAuth 2.0 Using Live Connect API■■ ���227

Use Case for OAuth: App-to-App Data Sharing���227

OAuth 2.0 Roles��228

OAuth 2.0 Client Types��229

OAuth 2.0 Client Profiles��229

OAuth 2.0 Authorization Grant Types��230

Authorization Code Grant�� 230

Implicit Grant�� 231

Resource Owner Password Grant��� 231

Client Credentials Grant�� 231

Access Token��232

Access Token as a Bearer Token�� 232

Refresh Token���233

Using Live Connect APIs���234

Registering Your Application in the Live Connect Portal��� 234

Using an Implicit Grant to Access Live Connect��� 235

Using an Authorization Code Grant to Access Live Connect��� 239

Using a Resource Owner Password Grant�� 247

Using a Client Credentials Grant��� 249

Summary��249

Chapter 12: OAuth 2.0 from the Ground Up■■ ��251

Scenario: Sharing Contact Information��251

Design��253

MyContacts Project��� 253

MyPromo Project�� 254

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiii

HTTP Transactions��255

Building the Contacts Manager Application���258

Building the Promotion Manager Application���263

Building the Authorization Server���267

Index Action Method for HTTP GET��� 269

Authenticate Action Method��� 273

Index Action Method for HTTP POST��� 274

Building the Resource Server���277

Security Considerations���280

Summary��282

Chapter 13: OAuth 2.0 Using DotNetOpenAuth■■ ���283

Design��284

MyContacts Project��� 284

MyPromo Project�� 285

HTTP Transactions��286

Implementation Ground Work���290

Building the Client Application���291

Building the Authorization Server���294

Creating the Infrastructure��� 295

Creating the IAuthorizationServerHost Implementation��� 301

Creating OAuth20Controller�� 306

Securing the OAuth20Controller Endpoints�� 309

Building the Resource Server���311

Implicit Grant��313

Summary��318

Chapter 14: Two-Factor Authentication■■ ��319

Two Ways to Implement TFA���319

Implementing Blanket TFA with ASP.NET Web API��320

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiv

Google Authenticator��322

How Does Google Authenticator Work from a User Perspective?��� 323

Under the Hood of Google Authenticator�� 325

Base32 Encoding and Decoding��� 327

Implementing TOTP Algorithm in a Console App��� 330

Implementing Constant Per-Request TFA���333

Implementing On-Demand Per-Request TFA��337

Two-Factor Security through Mobile Phones���341

Summary��342

Chapter 15: Security Vulnerabilities■■ ���345

OWASP Application Security Risks���345

Injection�� 346

Broken Authentication and Session Management�� 350

Cross-Site Scripting (XSS)�� 350

Insecure Direct Object References��� 351

Security Misconfiguration��� 351

Sensitive Data Exposure��� 352

Missing Function Level Access Control�� 358

Cross-Site Request Forgery (CSRF)�� 359

Using Known Vulnerable Components�� 367

Unvalidated Redirects and Forwards�� 367

Security = Hardware + Software + Process��367

Web Server Fingerprinting�� 368

Logging, Auditing, and Tracing��370

Implementing Tracing in ASP.NET Web API��� 370

Input Validation���372

Summary��373

Appendix: ASP.NET Web API Security Distilled■■ ���375

Index��381

www.it-ebooks.info

Quratek
Typewritten Text
V413HAV

http://www.it-ebooks.info/

xv

Foreword

Everybody who knows me also knows that identity and access control in distributed applications are very near and
dear to my heart. Having spent many years in the WS* security space (or WS-Deathstar as many called it), I was happy
to see that Microsoft finally built a web service framework that really embraces HTTP instead of abstracting it away.

It is also fair to say that the “web API idea” has taken the world (and its developers) by storm. Even if the
technology is not really new, having such capabilities in a mainstream framework like .NET makes adoption really
easy. In the short period of time since its first release, it has gained a lot of traction.

As with many other Microsoft technologies, for the first version they mainly concentrated on the core framework,
extensibility points, and a limited set of common use cases. The same is true for ASP.NET Web API: Although all the
foundational work has been done, the main focus in the security space was Windows authentication and (simpler)
AJAX scenarios. There was no built-in support for cross-domain scenarios like basic authentication, client certificates,
and token-based authentication (SAML/JWT), let alone two-factor authentication or emerging standards like OAuth2,
although it was technically totally possible.

Luckily Badri took that challenge and spent a lot of time exploring all these technologies and their integration
into ASP.NET Web API for you. I was totally impressed with how complete and strong this book is on both the “broad”
axis and the “deep” axis. In many ways this is the book that I wanted to write for years but never found the time for it.
Excellent job!

You, the reader, have quite a journey ahead of you. The world is moving to the web API approach to model
services, and the security scenarios are becoming even more complex. OAuth2 is the protocol that enables many of
these new architectures, but it will make your head hurt at first. It is also really hard to write a good security system
that does not get in the way of legitimate users. If you do your job really well no one will notice it, and for everything
else they will blame you! But a working system is very rewarding, and I still very much enjoy doing security every
single day.

With that said (and because I am not a big fan of overly long forewords), I wish you a lot of fun and many “a-ha”
moments while reading this really comprehensive and interesting book! Mind those tokens!

Dominick Baier
http://leastprivilege.com
http://thinktecture.com

https://twitter.com/leastprivilege

www.it-ebooks.info

http://leastprivilege.com
http://thinktecture.com
https://twitter.com/leastprivilege
http://www.it-ebooks.info/

xvii

About the Author

Badrinarayanan Lakshmiraghavan has more than fourteen years of information
technology experience in all phases of the software development life cycle, including
technology consulting and advisory roles in multiple technologies. He has been
programming on the Microsoft technology stack from the days of Visual Basic 3.0.

Badri currently is a senior technology architect with Global Technology
Consulting - Microsoft Center of Excellence of Cognizant (NASDAQ: CTSH),
a Fortune 500 company. He speaks three languages: Tamil, English, and C#.

Badri’s coordinates are 12.9758° N, 80.2205° E on the third rock from the
yellow-dwarf star that lies close to the inner rim of the Orion arm of the Milky
Way Galaxy.

www.it-ebooks.info

http://www.it-ebooks.info/

xix

About the Technical Reviewer

Fabio Claudio Ferracchiati, a prolific writer on cutting-edge technologies, has contributed to more than a dozen
books on .NET, C#, Visual Basic, and ASP.NET. He is a .NET Microsoft Certified Solution Developer and lives in Milan,
Italy. You can read his blog at Ferracchiati.com.

www.it-ebooks.info

http://Ferracchiati.com
http://www.it-ebooks.info/

xxi

Acknowledgments

Whether you seek general information on .NET security or specific information on claims-based identity and
ASP.NET Web API, you likely will find the answers you need on his blog at http://leastprivilege.com or in one
of his posts in a technical forum such as MSDN. No points for guessing who it is: Dominick Baier, the ultimate voice
of wisdom when it comes to ASP.NET Web API security! I deeply appreciate Dominick for all his help and guidance,
including taking time from his busy schedule to write the foreword for this book.

Just about every book author acknowledges the team assembled by the publisher, and I won’t be any different.
Cliché or not, I must gratefully thank the following individuals who are part of the Apress team (in the same order as
they got involved).

•	 Ewan Buckingham, lead editor, for his patience answering all my relevant and irrelevant
questions and helping me all the way from the proposal stage to manuscript completion.

•	 Mark Powers, coordinating editor, for his helping nature and promptness (I have yet to see an
instance where Mark has not replied to my mail two hours from the time I clicked the Send
button despite being on the other side of the globe).

•	 Fabio Claudio Ferracchiati, technical reviewer, for catching the subtle things that I overlooked.

•	 Teresa Horton, copy editor, for putting up with my writing, notably my problem with the usage
of articles.

•	 The SPi Global production team for diligently incorporating all the changes I asked for.

•	 Barbara McGuire, developmental editor, for her patience in reading through my jumbles,
giving structure and order to the content. Thanks very much, Barbara; you might be last on
this list, but definitely not the least!

My thanks also to Arvind TN of Cognizant GTC Microsoft CoE for asking THE question that resulted in this book.
Finally, a huge thank you to my family—my wife Poornima and my sons Anirudh and Aparajith—for their

understanding and enormous patience. My special thanks to Anirudh for understanding, without any complaints,
that his dad has to sit in front of the computer typing away, unable to watch with him such exciting things as an
asteroid hitting the earth and obliterating Triceratops, T-Rex, Stegosaurus, and Alamosaurus.

www.it-ebooks.info

http://leastprivilege.com
http://www.it-ebooks.info/

	Pro ASP.NET Web API Security

	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Welcome to ASP.NET Web API
	What Is a Web API, Anyway?
	A Primer on RESTful Web API
	Hello, ASP.NET Web API!
	WCF vs. ASP.NET Web API
	Programming Model Differences

	Scenarios in Which ASP.NET Web API Shines
	A Primer on Security
	Summary

	Chapter 2: Building RESTful Services
	What Is a RESTful Service?
	Identification of Resources
	Manipulation of Resources Through Representations
	Self-Descriptive Messages
	Scenario 1: JSON Representation
	Scenario 2: No Content Type
	Scenario 3: XML Representation
	Scenario 4: Mix and Match

	Hypermedia as the Engine of Application State
	Implementing and Consuming an ASP.NET Web API
	Our First Attempt in Securing a Web API
	Forms Authentication

	Summary

	Chapter 3: Extensibility Points
	The What and Why of Extensibility Points
	ASP.NET Web API Life Cycle
	Filters
	Authorize Filter
	Subclassed Authorize Filter
	ActionFilter

	Message Handlers
	HTTP Modules
	Summary

	Chapter 4: HTTP Anatomy and Security
	HTTP Transaction
	HTTP Request
	Request Headers
	HTTP Methods
	Method Overriding
	HTTP Response
	Status Codes
	The Curious Case of an Unhandled Exception

	Response Headers
	Response Body
	Web Caching
	Entity Tag
	Implementing ETag in ASP.NET Web API
	ETag ActionFilter
	Testing ETag ActionFilter

	ETags for Managing Concurrency

	Cross-Origin Resource Sharing
	Simple CORS
	Preflighted Request
	Implementing Preflighted CORS in ASP.NET Web API

	HTTP Cookies
	Cookies and ASP.NET Web API
	HttpOnly Cookies

	Proxy Server
	HTTPS
	Configuring HTTPS for ASP.NET Web API Hosted in IIS

	Fiddler: A Tool for Web Debugging
	Capturing and Decrypting HTTPS Traffic
	Fiddler as Man-in-the-Middle

	Summary

	Chapter 5: Identity Management
	Authentication and Authorization
	Role-Based Security
	Identity and Principal
	Using Generic Identity in a WinForms Application
	Using Windows Identity in a Console Application

	The Curious Case of Thread.CurrentPrincipal
	Claims-Based Security
	Real-World Analogy
	Claims-Based Access Control vs. Role-Based Access Control

	Using Claims-Based Security
	Implementing Role-Based Access Control Using Claims
	Implementing Claims-Based Access Control Using Claims

	Implementing Claims-Based ASP.NET Web API
	Security Token
	Token Formats

	Summary

	Chapter 6: Encryption and Signing
	Cryptography
	Encrypting a Message Using Symmetric Keys
	Signing a Message Using Symmetric Keys
	Encrypting a Message Using Asymmetric Keys
	Signing a Message Using Asymmetric Keys
	Token Encryption and Signing
	Comparison to Cryptographic Handling in WIF
	Token Encryption
	Token Signing

	Summary

	Chapter 7: Custom STS through WIF
	WS-Trust
	Trust Brokering
	The Request–Response Pair of RST and RSTR
	Proof of Possession

	Building a Custom STS
	Requesting a Token from a Custom STS
	Summary

	Chapter 8: Knowledge Factors
	Basic Authentication
	Implementing Basic Authentication in ASP.NET Web API
	Testing Basic Authentication
	Merits and Demerits of Basic Authentication

	Digest Authentication
	The Nuts and Bolts
	Security Defenses

	Implementing Digest Authentication
	Implementation Overview
	Implementation Details

	Testing Digest Authentication
	Merits and Demerits of Digest Authentication
	Trying to Break Digest Authentication

	Windows Authentication
	Configuring Windows Authentication
	Windows Authentication in Action
	Impersonation
	Testing Windows Authentication
	Merits and Demerits of Windows Authentication

	Summary

	Chapter 9: Ownership Factors
	Preshared Key
	Designing a Preshared Key Security Mechanism
	Defense Against Replay Attacks
	Defense Against Identifier Misuse
	Defense Against Man-in-the-Middle Attacks

	Implementing the Preshared Key Design
	Merits and Demerits of a Preshared Key

	X.509 Client Certificate
	Server Certificate vs. Client Certificate
	Using Client Certificate for Authentication in ASP.NET Web API
	Enabling HTTPS in IIS through Self-Signed Certificates
	Creating and Configuring the Client Certificate
	Using an X.509 Certificate in ASP.NET Web API
	Testing our ASP.NET Web API

	Merits and Demerits of a Client Certificate Mechanism

	SAML Tokens
	Implementing the Client Console Application
	Accepting a SAML Token in ASP.NET Web API
	Active Directory Federation Services
	Merits and Demerits of SAML Tokens

	Summary

	Chapter 10: Web Tokens
	Simple Web Token
	Anatomy of a SWT
	Using a SWT in a Console Application
	The Program Class
	The TokenIssuer Class
	The RelyingParty Class
	The SimpleWebToken Class

	JSON Web Token
	Base64 URL Encoding
	Anatomy of a Signed JSON Web Token
	Using a Signed JSON Web Token in a Console Application
	The Program Class
	The KeyIssuer Class
	The TokenIssuer Class
	The RelyingParty Class
	The JsonWebToken Class
	JSON Serialization and Deserialization
	Partial Implementation with the Properties
	Serialization (ToString Method)
	Deserialization (Parse Method)

	Anatomy of an Encrypted JSON Web Token
	Authenticated Encryption
	The Recipe for Creating an Encrypted JWT

	Using an Encrypted JSON Web Token in a Console Application
	Supporting Classes
	The JsonWebEncryptedToken Class
	Serialization (ToString Method)
	Deserialization (Parse Method)

	JWT Handler
	Summary

	Chapter 11: OAuth 2.0 Using Live Connect API
	Use Case for OAuth: App-to-App Data Sharing
	OAuth 2.0 Roles
	OAuth 2.0 Client Types
	OAuth 2.0 Client Profiles
	OAuth 2.0 Authorization Grant Types
	Authorization Code Grant
	Implicit Grant
	Resource Owner Password Grant
	Client Credentials Grant

	Access Token
	Access Token as a Bearer Token

	Refresh Token
	Using Live Connect APIs
	Registering Your Application in the Live Connect Portal
	Using an Implicit Grant to Access Live Connect
	Testing the ASP.NET MVC Application

	Using an Authorization Code Grant to Access Live Connect
	Testing the ASP.NET MVC Application
	Using a Refresh Token to Obtain an Access Token
	Revoking the Grant

	Using a Resource Owner Password Grant
	Using a Client Credentials Grant

	Summary

	Chapter 12: OAuth 2.0 from the Ground Up
	Scenario: Sharing Contact Information
	Design
	MyContacts Project
	MyPromo Project

	HTTP Transactions
	Building the Contacts Manager Application
	Building the Promotion Manager Application
	Building the Authorization Server
	Index Action Method for HTTP GET
	Authenticate Action Method
	Index Action Method for HTTP POST

	Building the Resource Server
	Security Considerations
	Summary

	Chapter 13: OAuth 2.0 Using DotNetOpenAuth
	Design
	MyContacts Project
	MyPromo Project

	HTTP Transactions
	Implementation Ground Work
	Building the Client Application
	Building the Authorization Server
	Creating the Infrastructure
	Design
	Implementing the Infrastructure Classes

	Creating the IAuthorizationServerHost Implementation
	Creating OAuth20Controller
	Securing the OAuth20Controller Endpoints

	Building the Resource Server
	Implicit Grant
	Summary

	Chapter 14: Two-Factor Authentication
	Two Ways to Implement TFA
	Implementing Blanket TFA with ASP.NET Web API
	Google Authenticator
	How Does Google Authenticator Work from a User Perspective?
	Under the Hood of Google Authenticator
	Base32 Encoding and Decoding
	Implementing TOTP Algorithm in a Console App

	Implementing Constant Per-Request TFA
	Implementing On-Demand Per-Request TFA
	Two-Factor Security through Mobile Phones
	Summary

	Chapter 15: Security Vulnerabilities
	OWASP Application Security Risks
	Injection
	SQL Injection
	Overposting

	Broken Authentication and Session Management
	Cross-Site Scripting (XSS)
	Insecure Direct Object References
	Security Misconfiguration
	Sensitive Data Exposure
	Data at Rest
	Hashing Passwords for Secure Storage
	Encrypting Web.Config

	Data in Motion
	Signing ASP.NET Web API Response

	Missing Function Level Access Control
	Cross-Site Request Forgery (CSRF)
	Understanding CSRF through Basic Authentication
	CSRF Involving Cookies
	Using the ASP.NET MVC Antiforgery Token with ASP.NET Web API

	Using Known Vulnerable Components
	Unvalidated Redirects and Forwards

	Security = Hardware + Software + Process
	Web Server Fingerprinting

	Logging, Auditing, and Tracing
	Implementing Tracing in ASP.NET Web API

	Input Validation
	Summary

	Appendix: ASP.NET Web API Security Distilled

	Index

